Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis Testing: A Lesson From Fano (2210.13662v2)

Published 24 Oct 2022 in cs.LG, cs.CR, cs.IT, and math.IT

Abstract: Differential privacy (DP) is by far the most widely accepted framework for mitigating privacy risks in machine learning. However, exactly how small the privacy parameter $\epsilon$ needs to be to protect against certain privacy risks in practice is still not well-understood. In this work, we study data reconstruction attacks for discrete data and analyze it under the framework of multiple hypothesis testing. We utilize different variants of the celebrated Fano's inequality to derive upper bounds on the inferential power of a data reconstruction adversary when the model is trained differentially privately. Importantly, we show that if the underlying private data takes values from a set of size $M$, then the target privacy parameter $\epsilon$ can be $O(\log M)$ before the adversary gains significant inferential power. Our analysis offers theoretical evidence for the empirical effectiveness of DP against data reconstruction attacks even at relatively large values of $\epsilon$.

Citations (17)

Summary

We haven't generated a summary for this paper yet.