Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Stabilizing and Robust Control of Discrete-Time Linear Systems with Error in Variables (2210.13430v4)

Published 24 Oct 2022 in math.OC, cs.SY, and eess.SY

Abstract: This work presents a sum-of-squares (SOS) based framework to perform data-driven stabilization and robust control tasks on discrete-time linear systems where the full-state observations are corrupted by L-infinity bounded input, measurement, and process noise (error in variable setting). Certificates of state-feedback superstability, quadratic stability or positive stability of all plants in a consistency set are provided by solving a feasibility program formed by polynomial nonnegativity constraints. Under mild compactness and data-collection assumptions, SOS tightenings in rising degree will converge to recover the true superstabilizing or positive stabilizing controller, with some conservatism introduced for quadratic stabilizability. The performance of this SOS method is improved through the application of a theorem of alternatives while retaining tightness, in which the unknown noise variables are eliminated from the consistency set description. This SOS feasibility method is extended to provide worst-case-optimal robust controllers under H2 control costs. The consistency set description may be broadened to include cases where the data and process are affected by a combination of L-infinity bounded measurement, process, and input noise.

Citations (6)

Summary

We haven't generated a summary for this paper yet.