Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NASA: Neural Architecture Search and Acceleration for Hardware Inspired Hybrid Networks (2210.13361v2)

Published 24 Oct 2022 in cs.AR and cs.LG

Abstract: Multiplication is arguably the most cost-dominant operation in modern deep neural networks (DNNs), limiting their achievable efficiency and thus more extensive deployment in resource-constrained applications. To tackle this limitation, pioneering works have developed handcrafted multiplication-free DNNs, which require expert knowledge and time-consuming manual iteration, calling for fast development tools. To this end, we propose a Neural Architecture Search and Acceleration framework dubbed NASA, which enables automated multiplication-reduced DNN development and integrates a dedicated multiplication-reduced accelerator for boosting DNNs' achievable efficiency. Specifically, NASA adopts neural architecture search (NAS) spaces that augment the state-of-the-art one with hardware-inspired multiplication-free operators, such as shift and adder, armed with a novel progressive pretrain strategy (PGP) together with customized training recipes to automatically search for optimal multiplication-reduced DNNs; On top of that, NASA further develops a dedicated accelerator, which advocates a chunk-based template and auto-mapper dedicated for NASA-NAS resulting DNNs to better leverage their algorithmic properties for boosting hardware efficiency. Experimental results and ablation studies consistently validate the advantages of NASA's algorithm-hardware co-design framework in terms of achievable accuracy and efficiency tradeoffs. Codes are available at https://github.com/GATECH-EIC/NASA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Huihong Shi (18 papers)
  2. Haoran You (33 papers)
  3. Yang Zhao (382 papers)
  4. Zhongfeng Wang (50 papers)
  5. Yingyan Lin (67 papers)
Citations (7)