Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Self-Supervised Learning with Lie Groups (2210.13356v1)

Published 24 Oct 2022 in cs.CV and cs.LG

Abstract: Deep learning has led to remarkable advances in computer vision. Even so, today's best models are brittle when presented with variations that differ even slightly from those seen during training. Minor shifts in the pose, color, or illumination of an object can lead to catastrophic misclassifications. State-of-the art models struggle to understand how a set of variations can affect different objects. We propose a framework for instilling a notion of how objects vary in more realistic settings. Our approach applies the formalism of Lie groups to capture continuous transformations to improve models' robustness to distributional shifts. We apply our framework on top of state-of-the-art self-supervised learning (SSL) models, finding that explicitly modeling transformations with Lie groups leads to substantial performance gains of greater than 10% for MAE on both known instances seen in typical poses now presented in new poses, and on unknown instances in any pose. We also apply our approach to ImageNet, finding that the Lie operator improves performance by almost 4%. These results demonstrate the promise of learning transformations to improve model robustness.

Citations (5)

Summary

We haven't generated a summary for this paper yet.