Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LCPFormer: Towards Effective 3D Point Cloud Analysis via Local Context Propagation in Transformers (2210.12755v2)

Published 23 Oct 2022 in cs.CV

Abstract: Transformer with its underlying attention mechanism and the ability to capture long-range dependencies makes it become a natural choice for unordered point cloud data. However, separated local regions from the general sampling architecture corrupt the structural information of the instances, and the inherent relationships between adjacent local regions lack exploration, while local structural information is crucial in a transformer-based 3D point cloud model. Therefore, in this paper, we propose a novel module named Local Context Propagation (LCP) to exploit the message passing between neighboring local regions and make their representations more informative and discriminative. More specifically, we use the overlap points of adjacent local regions (which statistically show to be prevalent) as intermediaries, then re-weight the features of these shared points from different local regions before passing them to the next layers. Inserting the LCP module between two transformer layers results in a significant improvement in network expressiveness. Finally, we design a flexible LCPFormer architecture equipped with the LCP module. The proposed method is applicable to different tasks and outperforms various transformer-based methods in benchmarks including 3D shape classification and dense prediction tasks such as 3D object detection and semantic segmentation. Code will be released for reproduction.

Citations (43)

Summary

We haven't generated a summary for this paper yet.