Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Chinese Named Entity Recognition by Search Engine Augmentation (2210.12662v1)

Published 23 Oct 2022 in cs.CL and cs.AI

Abstract: Compared with English, Chinese suffers from more grammatical ambiguities, like fuzzy word boundaries and polysemous words. In this case, contextual information is not sufficient to support Chinese named entity recognition (NER), especially for rare and emerging named entities. Semantic augmentation using external knowledge is a potential way to alleviate this problem, while how to obtain and leverage external knowledge for the NER task remains a challenge. In this paper, we propose a neural-based approach to perform semantic augmentation using external knowledge from search engine for Chinese NER. In particular, a multi-channel semantic fusion model is adopted to generate the augmented input representations, which aggregates external related texts retrieved from the search engine. Experiments have shown the superiority of our model across 4 NER datasets, including formal and social media language contexts, which further prove the effectiveness of our approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Qinghua Mao (3 papers)
  2. Jiatong Li (47 papers)
  3. Kui Meng (3 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.