Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Calibration and Evaluation of Binary Classifiers (2210.12526v1)

Published 22 Oct 2022 in cs.CR and cs.LG

Abstract: We address two major obstacles to practical use of supervised classifiers on distributed private data. Whether a classifier was trained by a federation of cooperating clients or trained centrally out of distribution, (1) the output scores must be calibrated, and (2) performance metrics must be evaluated -- all without assembling labels in one place. In particular, we show how to perform calibration and compute precision, recall, accuracy and ROC-AUC in the federated setting under three privacy models (i) secure aggregation, (ii) distributed differential privacy, (iii) local differential privacy. Our theorems and experiments clarify tradeoffs between privacy, accuracy, and data efficiency. They also help decide whether a given application has sufficient data to support federated calibration and evaluation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.