Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Hair Style Transfer with Generative Adversarial Networks (2210.12524v1)

Published 22 Oct 2022 in cs.CV and eess.IV

Abstract: Despite the recent success of image generation and style transfer with Generative Adversarial Networks (GANs), hair synthesis and style transfer remain challenging due to the shape and style variability of human hair in in-the-wild conditions. The current state-of-the-art hair synthesis approaches struggle to maintain global composition of the target style and cannot be used in real-time applications due to their high running costs on high-resolution portrait images. Therefore, We propose a novel hairstyle transfer method, called EHGAN, which reduces computational costs to enable real-time processing while improving the transfer of hairstyle with better global structure compared to the other state-of-the-art hair synthesis methods. To achieve this goal, we train an encoder and a low-resolution generator to transfer hairstyle and then, increase the resolution of results with a pre-trained super-resolution model. We utilize Adaptive Instance Normalization (AdaIN) and design our novel Hair Blending Block (HBB) to obtain the best performance of the generator. EHGAN needs around 2.7 times and over 10,000 times less time consumption than the state-of-the-art MichiGAN and LOHO methods respectively while obtaining better photorealism and structural similarity to the desired style than its competitors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.