Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Abstract Interpretation-Based Feature Importance for SVMs (2210.12456v1)

Published 22 Oct 2022 in cs.LG

Abstract: We propose a symbolic representation for support vector machines (SVMs) by means of abstract interpretation, a well-known and successful technique for designing and implementing static program analyses. We leverage this abstraction in two ways: (1) to enhance the interpretability of SVMs by deriving a novel feature importance measure, called abstract feature importance (AFI), that does not depend in any way on a given dataset of the accuracy of the SVM and is very fast to compute, and (2) for verifying stability, notably individual fairness, of SVMs and producing concrete counterexamples when the verification fails. We implemented our approach and we empirically demonstrated its effectiveness on SVMs based on linear and non-linear (polynomial and radial basis function) kernels. Our experimental results show that, independently of the accuracy of the SVM, our AFI measure correlates much more strongly with the stability of the SVM to feature perturbations than feature importance measures widely available in machine learning software such as permutation feature importance. It thus gives better insight into the trustworthiness of SVMs.

Summary

We haven't generated a summary for this paper yet.