Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Divisibility on point counting over finite Witt rings (2210.12433v1)

Published 22 Oct 2022 in math.NT and math.AC

Abstract: Let $\mathbb{F}_q$ denote the finite field of $q$ elements with characteristic $p$. Let $\mathbb{Z}_q$ denote the unramified extension of the $p$-adic integers $\mathbb{Z}_p$ with residue field $\mathbb{F}_q$. In this paper, we investigate the $q$-divisibility for the number of solutions of a polynomial system in $n$ variables over the finite Witt ring $\mathbb{Z}_q/pm\mathbb{Z}_q$, where the $n$ variables of the polynomials are restricted to run through a combinatorial box lifting $\mathbb{F}_qn$. The introduction of the combinatorial box makes the problem much more complicated. We prove a $q$-divisibility theorem for any box of low algebraic complexity, including the simplest Teichm\"uller box.This extends the classical Ax-Katz theorem over finite field $\mathbb{F}_q$ (the case $m=1$). Taking $q=p$ to be a prime, our result extends and improves a recent combinatorial theorem of Grynkiewicz. Our different approach is based on the addition operation of Witt vectors and is conceptually much more transparent.

Summary

We haven't generated a summary for this paper yet.