Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DIGMN: Dynamic Intent Guided Meta Network for Differentiated User Engagement Forecasting in Online Professional Social Platforms (2210.12402v2)

Published 22 Oct 2022 in cs.LG

Abstract: User engagement prediction plays a critical role for designing interaction strategies to grow user engagement and increase revenue in online social platforms. Through the in-depth analysis of the real-world data from the world's largest professional social platforms, i.e., LinkedIn, we find that users expose diverse engagement patterns, and a major reason for the differences in user engagement patterns is that users have different intents. That is, people have different intents when using LinkedIn, e.g., applying for jobs, building connections, or checking notifications, which shows quite different engagement patterns. Meanwhile, user intents and the corresponding engagement patterns may change over time. Although such pattern differences and dynamics are essential for user engagement prediction, differentiating user engagement patterns based on user dynamic intents for better user engagement forecasting has not received enough attention in previous works. In this paper, we proposed a Dynamic Intent Guided Meta Network (DIGMN), which can explicitly model user intent varying with time and perform differentiated user engagement forecasting. Specifically, we derive some interpretable basic user intents as prior knowledge from data mining and introduce prior intents in explicitly modeling dynamic user intent. Furthermore, based on the dynamic user intent representations, we propose a meta predictor to perform differentiated user engagement forecasting. Through a comprehensive evaluation on LinkedIn anonymous user data, our method outperforms state-of-the-art baselines significantly, i.e., 2.96% and 3.48% absolute error reduction, on coarse-grained and fine-grained user engagement prediction tasks, respectively, demonstrating the effectiveness of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Feifan Li (4 papers)
  2. Lun Du (50 papers)
  3. Qiang Fu (159 papers)
  4. Shi Han (74 papers)
  5. Yushu Du (4 papers)
  6. Guangming Lu (49 papers)
  7. Zi Li (33 papers)
Citations (2)