Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Multi-Branch CNN Architecture for Early Alzheimer's Detection from Brain MRIs (2210.12331v3)

Published 22 Oct 2022 in eess.IV, cs.CV, and cs.LG

Abstract: Alzheimer's disease (AD) is a neuro-degenerative disease that can cause dementia and result severe reduction in brain function inhibiting simple tasks especially if no preventative care is taken. Over 1 in 9 Americans suffer from AD induced dementia and unpaid care for people with AD related dementia is valued at $271.6 billion. Hence, various approaches have been developed for early AD diagnosis to prevent its further progression. In this paper, we first review other approaches that could be used for early detection of AD. We then give an overview of our dataset that was from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and propose a deep Convolutional Neural Network (CNN) architecture consisting of 7,866,819 parameters. This model has three different convolutional branches with each having a different length. Each branch is comprised of different kernel sizes. This model can predict whether a patient is non-demented, mild-demented, or moderately demented with a 99.05% three class accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. Alzheimer’s Association. "Mild cognitive impairment (MCI)." Available at: https://www.alz.org/alzheimers-dementia/what-is-dementia/related_conditions/mild-cognitive-impairment. Accessed August 22, 2022
  2. Mayo Clinic. "Mild cognitive impairment (MCI): Symptoms and causes." Available at: https://www.mayoclinic.org/diseases-conditions/mild-cognitive-impairment/symptoms-causes/syc-20354578. Accessed August 22, 2022.
  3. G. Currie, K. E. Hawk, E. Rohren, A. Vial, and R. Klein, “Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging,” J. Med. Imaging Radiat. Sci., vol. 50, no. 4, pp. 477–487, Dec. 2019, doi: 10.1016/j.jmir.2019.09.005.
  4. M. Mahmud, M. S. Kaiser, T. M. McGinnity, and A. Hussain, “Deep learning in mining biological data,” Cognitive computation, vol. 13, pp. 1–33, 2021.
  5. A. Ebrahimi and S. Luo, “Convolutional neural networks for Alzheimer’s disease detection on MRI images,” J. Med. Imaging, vol. 8, no. 2, p. 024503, Mar. 2021, doi: 10.1117/1.JMI.8.2.024503.
  6. M. Lopez-Martin, A. Nevado, and B. Carro, “Detection of early stages of Alzheimer’s disease based on MEG activity with a randomized convolutional neural network,” Artif. Intell. Med., vol. 107, p. 101924, Jul. 2020, doi: 10.1016/j.artmed.2020.101924.
  7. D. Vaghari, E. Kabir, and R. N. Henson, “Late combination shows that MEG adds to MRI in classifying MCI versus controls,” Neuroimage, vol. 252, p. 119054, May 2022, doi: 10.1016/j.neuroimage.2022.119054.
  8. P. K. Mandal, A. Banerjee, M. Tripathi, and A. Sharma, “A Comprehensive Review of Magnetoencephalography (MEG) Studies for Brain Functionality in Healthy Aging and Alzheimer’s Disease (AD),” Front. Comput. Neurosci., vol. 12, 2018, Accessed: Nov. 21, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fncom.2018.00060.
  9. M. Buscema, P. Rossini, C. Babiloni, and E. Grossi, “The IFAST model, a novel parallel nonlinear EEG analysis technique, distinguishes mild cognitive impairment and Alzheimer’s disease patients with high degree of accuracy,” Artif. Intell. Med., vol. 40, no. 2, pp. 127–141, Jun. 2007, doi: 10.1016/j.artmed.2007.02.006.
  10. D. Pirrone, E. Weitschek, P. Di Paolo, S. De Salvo, and M. C. De Cola, “EEG Signal Processing and Supervised Machine Learning to Early Diagnose Alzheimer’s Disease,” Appl. Sci., vol. 12, no. 11, Art. no. 11, Jan. 2022, doi: 10.3390/app12115413.
  11. Alzheimer’s Disease Neuroimaging Initiative. University of Southern California. Available at: https://adni.loni.usc.edu/
  12. Alzheimer’s Dataset. Kaggle. Available at: https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-dataset (Accessed: October 6, 2022).
Citations (3)

Summary

We haven't generated a summary for this paper yet.