Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty Estimates of Predictions via a General Bias-Variance Decomposition (2210.12256v3)

Published 21 Oct 2022 in cs.LG and stat.ML

Abstract: Reliably estimating the uncertainty of a prediction throughout the model lifecycle is crucial in many safety-critical applications. The most common way to measure this uncertainty is via the predicted confidence. While this tends to work well for in-domain samples, these estimates are unreliable under domain drift and restricted to classification. Alternatively, proper scores can be used for most predictive tasks but a bias-variance decomposition for model uncertainty does not exist in the current literature. In this work we introduce a general bias-variance decomposition for proper scores, giving rise to the Bregman Information as the variance term. We discover how exponential families and the classification log-likelihood are special cases and provide novel formulations. Surprisingly, we can express the classification case purely in the logit space. We showcase the practical relevance of this decomposition on several downstream tasks, including model ensembles and confidence regions. Further, we demonstrate how different approximations of the instance-level Bregman Information allow reliable out-of-distribution detection for all degrees of domain drift.

Citations (8)

Summary

We haven't generated a summary for this paper yet.