Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solution of the Schrodinger equation for quasi-one-dimensional materials using helical waves (2210.12252v2)

Published 21 Oct 2022 in physics.comp-ph, cond-mat.mtrl-sci, and cond-mat.str-el

Abstract: We formulate and implement a spectral method for solving the Schrodinger equation, as it applies to quasi-one-dimensional materials and structures. This allows for computation of the electronic structure of important technological materials such as nanotubes (of arbitrary chirality), nanowires, nanoribbons, chiral nanoassemblies, nanosprings and nanocoils, in an accurate, efficient and systematic manner. Our work is motivated by the observation that one of the most successful methods for carrying out electronic structure calculations of bulk/crystalline systems -- the plane-wave method -- is a spectral method based on eigenfunction expansion. Our scheme avoids computationally onerous approximations involving periodic supercells often employed in conventional plane-wave calculations of quasi-one-dimensional materials, and also overcomes several limitations of other discretization strategies, e.g., those based on finite differences and atomic orbitals. We describe the setup of fast transforms to carry out discretization of the governing equations using our basis set, and the use of matrix-free iterative diagonalization to obtain the electronic eigenstates. Miscellaneous computational details, including the choice of eigensolvers, use of a preconditioning scheme, evaluation of oscillatory radial integrals and the imposition of a kinetic energy cutoff are discussed. We have implemented these strategies into a computational package called HelicES (Helical Electronic Structure). We demonstrate the utility of our method in carrying out systematic electronic structure calculations of various quasi-one-dimensional materials through numerous examples involving nanotubes, nanoribbons and nanowires. We also explore the convergence, accuracy and efficiency of our method. We anticipate that our method will find numerous applications in computational nanomechanics and materials science.

Summary

We haven't generated a summary for this paper yet.