Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Resource Multilingual and Zero-Shot Multispeaker TTS (2210.12223v1)

Published 21 Oct 2022 in cs.CL, cs.SD, and eess.AS

Abstract: While neural methods for text-to-speech (TTS) have shown great advances in modeling multiple speakers, even in zero-shot settings, the amount of data needed for those approaches is generally not feasible for the vast majority of the world's over 6,000 spoken languages. In this work, we bring together the tasks of zero-shot voice cloning and multilingual low-resource TTS. Using the language agnostic meta learning (LAML) procedure and modifications to a TTS encoder, we show that it is possible for a system to learn speaking a new language using just 5 minutes of training data while retaining the ability to infer the voice of even unseen speakers in the newly learned language. We show the success of our proposed approach in terms of intelligibility, naturalness and similarity to target speaker using objective metrics as well as human studies and provide our code and trained models open source.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Florian Lux (17 papers)
  2. Julia Koch (9 papers)
  3. Ngoc Thang Vu (93 papers)
Citations (21)