Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Life is a Circus and We are the Clowns: Automatically Finding Analogies between Situations and Processes (2210.12197v2)

Published 21 Oct 2022 in cs.CL and cs.AI

Abstract: Analogy-making gives rise to reasoning, abstraction, flexible categorization and counterfactual inference -- abilities lacking in even the best AI systems today. Much research has suggested that analogies are key to non-brittle systems that can adapt to new domains. Despite their importance, analogies received little attention in the NLP community, with most research focusing on simple word analogies. Work that tackled more complex analogies relied heavily on manually constructed, hard-to-scale input representations. In this work, we explore a more realistic, challenging setup: our input is a pair of natural language procedural texts, describing a situation or a process (e.g., how the heart works/how a pump works). Our goal is to automatically extract entities and their relations from the text and find a mapping between the different domains based on relational similarity (e.g., blood is mapped to water). We develop an interpretable, scalable algorithm and demonstrate that it identifies the correct mappings 87% of the time for procedural texts and 94% for stories from cognitive-psychology literature. We show it can extract analogies from a large dataset of procedural texts, achieving 79% precision (analogy prevalence in data: 3%). Lastly, we demonstrate that our algorithm is robust to paraphrasing the input texts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Oren Sultan (6 papers)
  2. Dafna Shahaf (33 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com