Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Formalizing Chemical Physics using the Lean Theorem Prover (2210.12150v5)

Published 21 Oct 2022 in cs.LO

Abstract: Chemical theory can be made more rigorous using the Lean theorem prover, an interactive theorem prover for complex mathematics. We formalize the Langmuir and BET theories of adsorption, making each scientific premise clear and every step of the derivations explicit. Lean's math library, mathlib, provides formally verified theorems for infinite geometries series, which are central to BET theory. While writing these proofs, Lean prompts us to include mathematical constraints that were not originally reported. We also illustrate how Lean flexibly enables the reuse of proofs that build on more complex theories through the use of functions, definitions, and structures. Finally, we construct scientific frameworks for interoperable proofs, by creating structures for classical thermodynamics and kinematics, using them to formalize gas law relationships like Boyle's Law and equations of motion underlying Newtonian mechanics, respectively. This approach can be extended to other fields, enabling the formalization of rich and complex theories in science and engineering.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (103)
  1. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society. 1918;40(9):1361-403.
  2. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 1938;60(2):309–319.
  3. Hinsen K. Computational science: shifting the focus from tools to models. F1000Research. 2014;3(101).
  4. Hales TC. Formal proof. Notices of the AMS. 2008;55(11):1370-80.
  5. Rudnicki P. An overview of the Mizar project. In: Proceedings of the 1992 Workshop on Types for Proofs and Programs; 1992. p. 311-30.
  6. Wenzel MM. Isabelle/Isar - A versatile environment for human-readable formal proof documents; 2002.
  7. Gordon MJ, Melham TF. Introduction to HOL: A theorem proving environment for higher order logic. Cambridge University Press; 1993.
  8. Isabelle/HOL: A proof assistant for higher-order logic. Springer; 2002.
  9. PVS: A prototype verification system. In: International Conference on Automated Deduction. Springer; 1992. p. 748-52.
  10. SymPy: Symbolic Computing in Python. PeerJ Computer Science. 2017;3:e103.
  11. The Misfortunes of a Trio of Mathematicians Using Computer Algebra Systems. Can We Trust in Them? Notices of the American Mathematical Society. 2014 Nov;61(10):1249. Available from: http://www.ams.org/notices/201410/rnoti-p1249.pdf.
  12. The Lean theorem prover (system description). Automated Deduction - CADE-25. 2015:378–388.
  13. Wolfram S. Mathematica: A system for doing mathematics by computer. Addison Wesley Longman Publishing Co., Inc.; 1991.
  14. Available from: https://www.mathworks.com.
  15. Every planar map is four colorable. Part II: Reducibility. Illinois Journal of Mathematics. 1977;21(3):491-567.
  16. Gonthier G, et al. Formal proof–the four-color theorem. Notices of the AMS. 2008;55(11):1382-93.
  17. Coquelicot: A user-friendly library of real analysis for Coq. Mathematics in Computer Science. 2015;9(1):41-62.
  18. A formal proof of the Kepler conjecture. In: Forum of Mathematics, Pi. vol. 5. Cambridge University Press; 2017. .
  19. Formalising perfectoid spaces. In: Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs; 2020. p. 299-312.
  20. Hartnett K. Proof Assistant Makes Jump to Big-League Math; 2021. Accessed: 2022-08-26. https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/.
  21. Whitehead AN, Russell B. Principia Mathematica. Cambridge University Press; 1997.
  22. Hartnett K. Building the Mathematical Library of the Future. Quanta Magazine. 2020 Oct.
  23. Hilbert D. Mathematical problems. Bulletin of the American Mathematical Society. 1902;8(10):437–479.
  24. Corry L. David Hilbert and the axiomatization of physics (1894–1905). Archive for history of exact sciences. 1997;51:83-198.
  25. Gorban AN. Hilbert’s sixth problem: the endless road to rigour. The Royal Society Publishing; 2018.
  26. Paleo BW. Physics and proof theory. Applied Mathematics and Computation. 2012;219(1):45-53.
  27. Fleuriot JD, Paulson LC. A combination of nonstandard analysis and geometry theorem proving, with application to Newton’s Principia. In: Carbonell JG, Siekmann J, Goos G, Hartmanis J, Van Leeuwen J, Kirchner C, et al., editors. Automated Deduction — CADE-15. vol. 1421. Springer Berlin Heidelberg; 1998. p. 3-16. Series Title: Lecture Notes in Computer Science. Available from: https://link.springer.com/10.1007/BFb0054241.
  28. Fleuriot JD, Paulson LC. Proving Newton’s Propositio Kepleriana Using Geometry and Nonstandard Analysis in Isabelle. In: Goos G, Hartmanis J, Van Leeuwen J, editors. Automated Deduction in Geometry. vol. 1669. Springer Berlin Heidelberg; 1999. p. 47-66. Series Title: Lecture Notes in Computer Science. Available from: http://link.springer.com/10.1007/3-540-47997-X_4.
  29. Stannett M, Németi I. Using Isabelle/HOL to verify first-order relativity theory. Journal of Automated Reasoning. 2014;52(4):361-78.
  30. Lu EH. A formalization of elements of special relativity in Coq; 2017.
  31. Formal analysis of optical systems. Mathematics in Computer Science. 2014;8(1):39-70.
  32. Siddique MU. Formal analysis of geometrical optics using theorem proving; 2015.
  33. Design of quantum optical experiments with logic artificial intelligence. Quantum. 2022;6:836.
  34. Combining data and theory for derivable scientific discovery with AI-Descartes. Nature Communications. 2023 Apr;14(1):1777. Available from: https://www.nature.com/articles/s41467-023-37236-y.
  35. Carathéodory C. Untersuchungen über die Grundlagen der Thermodynamik. Mathematische Annalen. 1909;67:355-86.
  36. Lieb EH, Yngvason J. The physics and mathematics of the second law of thermodynamics. Physics Reports. 1999;310(1):1-96.
  37. Bohrer R. Chemical Case Studies in KeYmaera X. In: Groote JF, Huisman M, editors. Formal Methods for Industrial Critical Systems - 27th International Conference, FMICS 2022, Warsaw, Poland, September 14-15, 2022, Proceedings. vol. 13487 of Lecture Notes in Computer Science. Springer; 2022. p. 103-20. Available from: https://doi.org/10.1007/978-3-031-15008-1_8.
  38. Alur R. Formal verification of hybrid systems. In: Proceedings of the ninth ACM international conference on Embedded software; 2011. p. 273-8.
  39. Theorem proving in Lean. Release. 2015;3(0):1-4.
  40. mathlib Community T. The lean mathematical library. In: Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs. ACM; 2020. Available from: https://doi.org/10.1145%2F3372885.3373824.
  41. Lean Prover Community on Zulip;. https://leanprover.zulipchat.com/.
  42. Undergraduate Mathematics in mathlib;. https://leanprover-community.github.io/undergrad.html.
  43. Formalising Perfectoid Spaces. In: Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs. CPP 2020. New York, NY, USA: Association for Computing Machinery; 2020. p. 299–312. Available from: https://doi.org/10.1145/3372885.3373830.
  44. Formalizing the solution to the Cap Set problem. In: 10th International Conference on Interactive Theorem Proving (ITP 2019). vol. 141 of Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik; 2019. p. 15:1-15:19. Available from: http://drops.dagstuhl.de/opus/volltexte/2019/11070.
  45. Scholze P. Lean liquid. GitHub; 2020. https://github.com/leanprover-community/lean-liquid.
  46. Hartnett K. Proof Assistant Makes Jump to Big-League Math. Quanta Magazine. 2021 Jul.
  47. Buzzard K, Pedramfar M. Natural Number Game. GitHub; 2020. https://github.com/ImperialCollegeLondon/natural_number_game.
  48. Available from: https://arxiv.org/abs/2102.06203.
  49. Formal Mathematics Statement Curriculum Learning. In: International Conference on Learning Representations; 2023. .
  50. Whitehead GW. Elements of Homotopy Theory. vol. 61. Springer Science & Business Media; 2012.
  51. Goerss PG, Jardine JF. Simplicial Homotopy Theory. Springer Science & Business Media; 2009.
  52. Coquand T, Huet G. The Calculus of Constructions; 1986.
  53. Coquand T, Paulin C. Inductively defined types. In: International Conference on Computer Logic. Springer; 1988. p. 50-66.
  54. Coquand T, Gallier JH. A proof of strong normalization for the theory of constructions using a Kripke-like interpretation; 1990.
  55. Volmer M. Thermodynamische Folgerungen ans der Zustandsgleichung für adsorbierte Stoffe. Zeitschrift für Physikalische Chemie. 1925;115(1):253-60.
  56. Masel RI. Principles of adsorption and reaction on solid surfaces. vol. 3. John Wiley & Sons; 1996.
  57. Kleman M, Lavrentovich OD. Soft Matter Physics: An introduction. Springer; 2003.
  58. Lambda calculus with types. Cambridge University Press; 2013.
  59. Dahm KD, Visco DP. Fundamentals of Chemical Engineering Thermodynamics. Cengage Learning; 2015.
  60. Sandler SI. Chemical, Biochemical, and Engineering Thermodynamics. John Wiley & Sons; 2017.
  61. Levine IN. Physical Chemistry. McGraw-Hill; 1978.
  62. Atkins P. The Laws of Thermodynamics: A Very Short Introduction. OUP Oxford; 2010.
  63. Frost A, Pearson R. Kinetics and Mechanism. The Journal of Physical Chemistry. 1961;65(2):384-4.
  64. Bird RB. Transport phenomena. Appl Mech Rev. 2002;55(1):R1-4.
  65. Molecular Dynamics Simulation: Elementary Methods. vol. 7. American Institute of Physics; 1993.
  66. Beggs JS. Kinematics. CRC Press; 1983.
  67. Division by zero in type theory: a FAQ — web.archive.org;. [Accessed 21-Jul-2023]. https://web.archive.org/web/20230719150030/https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-faq/.
  68. Popov V. Imaginary-time method in quantum mechanics and field theory. Physics of Atomic Nuclei. 2005;68(4):686-708.
  69. Non-standard complex Lagrangian dynamics. J Adv Res Dyn Control Syst. 2013;5:50-62.
  70. What is a proof? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2005;363(1835):2377-91.
  71. Avigad J, Harrison J. Formally Verified Mathematics. Communications of the ACM. 2014;57(4):66-75.
  72. Tarski A. The semantic conception of truth: and the foundations of semantics. Philosophy and phenomenological research. 1944;4(3):341-76.
  73. Stebbing LS. The logical syntax of language. by Rudolf Carnap. translated from the German by Amethe Smeaton (countess von zeppelin). (London: Kegan Paul, Trench, Trubner & Co., Ltd. 1937. pp. XVI + 352. price 25s.). Philosophy. 1938;13(52):485–486.
  74. Carnap R. Introduction to Semantics; 1942.
  75. Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small methods. 2018;2(11):1800173.
  76. History of Interactive Theorem Proving. In: Computational Logic. vol. 9; 2014. p. 135-214.
  77. Kovács L, Voronkov A. First-order theorem proving and Vampire. In: International Conference on Computer Aided Verification. Springer; 2013. p. 1-35.
  78. McCune W. Solution of the Robbins Problem. Journal of Automated Reasoning. 1997;19(3):263–276.
  79. Automatic proof and disproof in Isabelle/HOL. In: Frontiers of Combining Systems: 8th International Symposium, FroCoS 2011, Saarbrücken, Germany, October 5-7, 2011. Proceedings 8. Springer; 2011. p. 12-27.
  80. Reinforcement learning of theorem proving. Advances in Neural Information Processing Systems. 2018;31.
  81. A deep reinforcement learning approach to first-order logic theorem proving. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35; 2021. p. 6279-87.
  82. Szegedy C. A promising path towards autoformalization and general artificial intelligence. In: Intelligent Computer Mathematics: 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020, Proceedings 13. Springer; 2020. p. 3-20.
  83. Language models are few-shot learners. Advances in Neural Information Processing Systems. 2020;33:1877-901.
  84. Evaluating large language models trained on code. arXiv preprint arXiv:210703374. 2021.
  85. Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems. 2022;35:24824-37.
  86. Han JM. GPT-f in Lean. GitHub; 2020. https://github.com/jesse-michael-han/lean-gptf.
  87. LeanDojo: Theorem Proving with Retrieval-Augmented Language Models. arXiv preprint arXiv:230615626. 2023.
  88. Hocky GM, White AD. Natural language processing models that automate programming will transform chemistry research and teaching. Digital Discovery. 2022;1(2):79-83.
  89. Do large language models know chemistry? Cambridge Open Engage; 2022. .
  90. Solving quantitative reasoning problems with language models. NeurIPS. 2022.
  91. ChemCrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:230405376. 2023.
  92. Gpteval: Nlg evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:230316634. 2023.
  93. Richards TB. Auto-GPT: An Autonomous GPT-4 Experiment. GitHub; 2023. https://github.com/Significant-Gravitas/Auto-GPT.
  94. Chase H. LangChain: Building applications with LLMs through composability. GitHub; 2022. https://github.com/langchain-ai/langchain.
  95. Function calling in GPT-4 and GPT-3.5;. https://openai.com/blog/function-calling-and-other-api-updates.
  96. Studying scientific discovery by computer simulation. Science. 1983;222(4627):971-5.
  97. Kitano H. Nobel Turing Challenge: creating the engine for scientific discovery. npj Systems Biology and Applications. 2021;7(1):1-12.
  98. On scientific understanding with artificial intelligence. Nature Reviews Physics. 2022:1-9.
  99. Kosmann-Schwarzbach Y. The Noether theorems. Springer; 2011.
  100. Moura Ld, Ullrich S. The Lean 4 theorem prover and programming language. In: International Conference on Automated Deduction. Springer; 2021. p. 625-35.
  101. Christiansen DT. Functional Programming in Lean;. https://leanprover.github.io/functional_programming_in_lean/.
  102. Dybjer P. Inductive families. Formal aspects of computing. 1994;6(4):440-65.
  103. Skolem TA. Peano’s Axioms and Models of Arithmetic. vol. 16. Elsevier; 1955.
Citations (1)

Summary

We haven't generated a summary for this paper yet.