Mesoscopic Central Limit Theorem for non-Hermitian Random Matrices (2210.12060v4)
Abstract: We prove that the mesoscopic linear statistics $\sum_i f(na(\sigma_i-z_0))$ of the eigenvalues ${\sigma_i}_i$ of large $n\times n$ non-Hermitian random matrices with complex centred i.i.d. entries are asymptotically Gaussian for any $H{2}_0$-functions $f$ around any point $z_0$ in the bulk of the spectrum on any mesoscopic scale $0<a<1/2$. This extends our previous result [arXiv:1912.04100], that was valid on the macroscopic scale, $a=0$, to cover the entire mesoscopic regime. The main novelty is a local law for the product of resolvents for the Hermitization of $X$ at spectral parameters $z_1, z_2$ with an improved error term in the entire mesoscopic regime $|z_1-z_2|\gg n{-1/2}$. The proof is dynamical; it relies on a recursive tandem of the characteristic flow method and the Green function comparison idea combined with a separation of the unstable mode of the underlying stability operator.
- “Dyson Brownian motion for general β𝛽\betaitalic_β and potential at the edge” In Probab. Theory Related Fields 178.3-4, 2020, pp. 893–950 DOI: 10.1007/s00440-020-00992-9
- “Local law and rigidity for unitary Brownian motion” In preprint, 2022 arXiv:2202.06714
- Johannes Alt, László Erdős and Torben Krüger “Local inhomogeneous circular law” In Ann. Appl. Probab. 28.1, 2018, pp. 148–203 DOI: 10.1214/17-AAP1302
- Johannes Alt, László Erdős and Torben Krüger “Spectral radius of random matrices with independent entries” In Probab. Math. Phys. 2.2, 2021, pp. 221–280 DOI: 10.2140/pmp.2021.2.221
- Z.D. Bai “Circular law” In Ann. Probab. 25.1, 1997, pp. 494–529 DOI: 10.1214/aop/1024404298
- “The distribution of overlaps between eigenvectors of Ginibre matrices” In Probab. Theory Related Fields 177.1-2, 2020, pp. 397–464 DOI: 10.1007/s00440-019-00953-x
- Paul Bourgade “Extreme gaps between eigenvalues of Wigner matrices” In J. Eur. Math. Soc. (JEMS) 24.8, 2022, pp. 2823–2873 DOI: 10.4171/jems/1141
- “Fixed energy universality for generalized Wigner matrices” In Comm. Pure Appl. Math. 69.10, 2016, pp. 1815–1881 DOI: 10.1002/cpa.21624
- “Liouville quantum gravity from random matrix dynamics” In preprint, 2022 arXiv:2206.03029
- Paul Bourgade, Horng-Tzer Yau and Jun Yin “Local circular law for random matrices” In Probab. Theory Related Fields 159.3-4, 2014, pp. 545–595 DOI: 10.1007/s00440-013-0514-z
- “Universality of the least singular value for sparse random matrices” In Electron. J. Probab. 24, 2019, pp. Paper No. 9\bibrangessep53 DOI: 10.1214/19-EJP269
- Giorgio Cipolloni, László Erdös and Dominik Schröder “On the Condition Number of the Shifted Real Ginibre Ensemble” In SIAM J. Matrix Anal. Appl. 43.3, 2022, pp. 1469–1487 DOI: 10.1137/21M1424408
- Giorgio Cipolloni, László Erdős and Dominik Schröder “Central Limit Theorem for Linear Eigenvalue Statistics of non-Hermitian Random Matrices” In Comm. Pure Appl. Math., 2019 arXiv: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.22028
- Giorgio Cipolloni, László Erdős and Dominik Schröder “Edge universality for non-Hermitian random matrices” In Probab. Theory Related Fields 179.1-2, 2021, pp. 1–28 DOI: 10.1007/s00440-020-01003-7
- Giorgio Cipolloni, László Erdős and Dominik Schröder “Eigenstate thermalization hypothesis for Wigner matrices” In Comm. Math. Phys. 388.2, 2021, pp. 1005–1048 DOI: 10.1007/s00220-021-04239-z
- Giorgio Cipolloni, László Erdős and Dominik Schröder “Fluctuation around the circular law for random matrices with real entries” In Electron. J. Probab. 26, 2021, pp. Paper No. 24\bibrangessep61
- Giorgio Cipolloni, László Erdős and Dominik Schröder “Functional Central Limit Theorems for Wigner Matrices” In Accepted for publication in Ann. Appl. Probab, 2020 arXiv:2012.13218
- Giorgio Cipolloni, László Erdős and Dominik Schröder “Optimal lower bound on the least singular value of the shifted Ginibre ensemble” In Probab. Math. Phys. 1.1, 2020, pp. 101–146 DOI: 10.2140/pmp.2020.1.101
- Giorgio Cipolloni, László Erdős and Dominik Schröder “Optimal multi-resolvent local laws for Wigner matrices” In Electron. J. Probab. 27, 2022, pp. – DOI: 10.1214/22-ejp838
- Giorgio Cipolloni, László Erdős and Dominik Schröder “Rank-uniform local law for Wigner matrices” In preprint, 2022 arXiv:2203.01861
- Giorgio Cipolloni, László Erdős and Dominik Schröder “Thermalisation for Wigner matrices” In J. Funct. Anal. 282.8, 2022, pp. Paper No. 109394\bibrangessep37 DOI: 10.1016/j.jfa.2022.109394
- “Gaussian fluctuations for linear eigenvalue statistics of products of independent iid random matrices” In J. Theoret. Probab. 33.3, 2020, pp. 1541–1612 DOI: 10.1007/s10959-019-00905-0
- “The local semicircle law for a general class of random matrices” In Electron. J. Probab. 18, 2013, pp. no. 59\bibrangessep58 DOI: 10.1214/EJP.v18-2473
- László Erdős, Torben Krüger and Dominik Schröder “Random matrices with slow correlation decay” In Forum Math. Sigma 7, 2019, pp. e8\bibrangessep89 DOI: 10.1017/fms.2019.2
- “Universality of local spectral statistics of random matrices” In Bull. Amer. Math. Soc. (N.S.) 49.3, 2012, pp. 377–414 DOI: 10.1090/S0273-0979-2012-01372-1
- P.J. Forrester “Fluctuation formula for complex random matrices” In J. Phys. A 32.13, 1999, pp. L159–L163 DOI: 10.1088/0305-4470/32/13/003
- Yan V. Fyodorov “On statistics of bi-orthogonal eigenvectors in real and complex Ginibre ensembles: combining partial Schur decomposition with supersymmetry” In Comm. Math. Phys. 363.2, 2018, pp. 579–603 DOI: 10.1007/s00220-018-3163-3
- V.L. Girko “The circular law” In Teor. Veroyatnost. i Primenen. 29.4, 1984, pp. 669–679
- “Mesoscopic eigenvalue statistics of Wigner matrices” In Ann. Appl. Probab. 27.3, 2017, pp. 1510–1550 DOI: 10.1214/16-AAP1237
- “Rigidity and a mesoscopic central limit theorem for Dyson Brownian motion for general β𝛽\betaitalic_β and potentials” In Probab. Theory Related Fields 175.1-2, 2019, pp. 209–253 DOI: 10.1007/s00440-018-0889-y
- Alexei M. Khorunzhy, Boris A. Khoruzhenko and Leonid A. Pastur “Asymptotic properties of large random matrices with independent entries” In J. Math. Phys. 37.10, 1996, pp. 5033–5060 DOI: 10.1063/1.531589
- Phil Kopel “Linear Statistics of Non-Hermitian Matrices Matching the Real or Complex Ginibre Ensemble to Four Moments” In preprint, 2015 arXiv:1510.02987
- Benjamin Landon, Patrick Lopatto and Philippe Sosoe “Single eigenvalue fluctuations of general Wigner-type matrices” In preprint, 2021 arXiv:2105.01178
- “Almost-optimal bulk regularity conditions in the CLT for Wigner matrices” In preprint, 2022 arXiv:2204.03419
- Benjamin Landon, Philippe Sosoe and Horng-Tzer Yau “Fixed energy universality of Dyson Brownian motion” In Adv. Math. 346, 2019, pp. 1137–1332 DOI: 10.1016/j.aim.2019.02.010
- Ji Oon Lee and Kevin Schnelli “Edge universality for deformed Wigner matrices” In Rev. Math. Phys. 27.8, 2015, pp. 1550018\bibrangessep94 DOI: 10.1142/S0129055X1550018X
- “Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees” In preprint, 2013 arXiv:1302.4738
- Hoi H. Nguyen and Van Vu “Random matrices: law of the determinant” In Ann. Probab. 42.1, 2014, pp. 146–167 DOI: 10.1214/12-AOP791
- “Universal Gaussian fluctuations of non-Hermitian matrix ensembles: from weak convergence to almost sure CLTs” In ALEA Lat. Am. J. Probab. Math. Stat. 7, 2010, pp. 341–375 URL: http://alea.math.cnrs.fr/articles/v7/07-18.pdf
- “Central limit theorem for linear eigenvalue statistics of elliptic random matrices” In J. Theoret. Probab. 29.3, 2016, pp. 1121–1191 DOI: 10.1007/s10959-015-0609-9
- B. Rider “Deviations from the circular law” In Probab. Theory Related Fields 130.3, 2004, pp. 337–367 DOI: 10.1007/s00440-004-0355-x
- B. Rider and Jack W. Silverstein “Gaussian fluctuations for non-Hermitian random matrix ensembles” In Ann. Probab. 34.6, 2006, pp. 2118–2143 DOI: 10.1214/009117906000000403
- “The noise in the circular law and the Gaussian free field” In Int. Math. Res. Not. IMRN, 2007, pp. Art. ID rnm006\bibrangessep33 DOI: 10.1093/imrn/rnm006
- Arvind Sankar, Daniel A. Spielman and Shang-Hua Teng “Smoothed analysis of the condition numbers and growth factors of matrices” In SIAM J. Matrix Anal. Appl. 28.2, 2006, pp. 446–476 DOI: 10.1137/S0895479803436202
- “The least singular value of the general deformed Ginibre ensemble” In preprint, 2022 arXiv:2204.06026
- Galen R. Shorack and Jon A. Wellner “Empirical Processes with Applications to Statistics” Society for IndustrialApplied Mathematics, 2009 DOI: 10.1137/1.9780898719017
- N.J. Simm “Central limit theorems for the real eigenvalues of large Gaussian random matrices” In Random Matrices Theory Appl. 6.1, 2017, pp. 1750002\bibrangessep18 DOI: 10.1142/S2010326317500022
- “Random matrices: the circular law” In Commun. Contemp. Math. 10.2, 2008, pp. 261–307 DOI: 10.1142/S0219199708002788
- “Random matrices: universality of local spectral statistics of non-Hermitian matrices” In Ann. Probab. 43.2, 2015, pp. 782–874 DOI: 10.1214/13-AOP876
- “Smooth analysis of the condition number and the least singular value” In Math. Comp. 79.272, 2010, pp. 2333–2352 DOI: 10.1090/S0025-5718-2010-02396-8
- Konstantin Tikhomirov “Invertibility via distance for noncentered random matrices with continuous distributions” In Random Structures Algorithms 57.2, 2020, pp. 526–562 DOI: 10.1002/rsa.20920