Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mesoscopic Central Limit Theorem for non-Hermitian Random Matrices (2210.12060v4)

Published 21 Oct 2022 in math.PR, math-ph, and math.MP

Abstract: We prove that the mesoscopic linear statistics $\sum_i f(na(\sigma_i-z_0))$ of the eigenvalues ${\sigma_i}_i$ of large $n\times n$ non-Hermitian random matrices with complex centred i.i.d. entries are asymptotically Gaussian for any $H{2}_0$-functions $f$ around any point $z_0$ in the bulk of the spectrum on any mesoscopic scale $0<a<1/2$. This extends our previous result [arXiv:1912.04100], that was valid on the macroscopic scale, $a=0$, to cover the entire mesoscopic regime. The main novelty is a local law for the product of resolvents for the Hermitization of $X$ at spectral parameters $z_1, z_2$ with an improved error term in the entire mesoscopic regime $|z_1-z_2|\gg n{-1/2}$. The proof is dynamical; it relies on a recursive tandem of the characteristic flow method and the Green function comparison idea combined with a separation of the unstable mode of the underlying stability operator.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. “Dyson Brownian motion for general β𝛽\betaitalic_β and potential at the edge” In Probab. Theory Related Fields 178.3-4, 2020, pp. 893–950 DOI: 10.1007/s00440-020-00992-9
  2. “Local law and rigidity for unitary Brownian motion” In preprint, 2022 arXiv:2202.06714
  3. Johannes Alt, László Erdős and Torben Krüger “Local inhomogeneous circular law” In Ann. Appl. Probab. 28.1, 2018, pp. 148–203 DOI: 10.1214/17-AAP1302
  4. Johannes Alt, László Erdős and Torben Krüger “Spectral radius of random matrices with independent entries” In Probab. Math. Phys. 2.2, 2021, pp. 221–280 DOI: 10.2140/pmp.2021.2.221
  5. Z.D. Bai “Circular law” In Ann. Probab. 25.1, 1997, pp. 494–529 DOI: 10.1214/aop/1024404298
  6. “The distribution of overlaps between eigenvectors of Ginibre matrices” In Probab. Theory Related Fields 177.1-2, 2020, pp. 397–464 DOI: 10.1007/s00440-019-00953-x
  7. Paul Bourgade “Extreme gaps between eigenvalues of Wigner matrices” In J. Eur. Math. Soc. (JEMS) 24.8, 2022, pp. 2823–2873 DOI: 10.4171/jems/1141
  8. “Fixed energy universality for generalized Wigner matrices” In Comm. Pure Appl. Math. 69.10, 2016, pp. 1815–1881 DOI: 10.1002/cpa.21624
  9. “Liouville quantum gravity from random matrix dynamics” In preprint, 2022 arXiv:2206.03029
  10. Paul Bourgade, Horng-Tzer Yau and Jun Yin “Local circular law for random matrices” In Probab. Theory Related Fields 159.3-4, 2014, pp. 545–595 DOI: 10.1007/s00440-013-0514-z
  11. “Universality of the least singular value for sparse random matrices” In Electron. J. Probab. 24, 2019, pp. Paper No. 9\bibrangessep53 DOI: 10.1214/19-EJP269
  12. Giorgio Cipolloni, László Erdös and Dominik Schröder “On the Condition Number of the Shifted Real Ginibre Ensemble” In SIAM J. Matrix Anal. Appl. 43.3, 2022, pp. 1469–1487 DOI: 10.1137/21M1424408
  13. Giorgio Cipolloni, László Erdős and Dominik Schröder “Central Limit Theorem for Linear Eigenvalue Statistics of non-Hermitian Random Matrices” In Comm. Pure Appl. Math., 2019 arXiv: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.22028
  14. Giorgio Cipolloni, László Erdős and Dominik Schröder “Edge universality for non-Hermitian random matrices” In Probab. Theory Related Fields 179.1-2, 2021, pp. 1–28 DOI: 10.1007/s00440-020-01003-7
  15. Giorgio Cipolloni, László Erdős and Dominik Schröder “Eigenstate thermalization hypothesis for Wigner matrices” In Comm. Math. Phys. 388.2, 2021, pp. 1005–1048 DOI: 10.1007/s00220-021-04239-z
  16. Giorgio Cipolloni, László Erdős and Dominik Schröder “Fluctuation around the circular law for random matrices with real entries” In Electron. J. Probab. 26, 2021, pp. Paper No. 24\bibrangessep61
  17. Giorgio Cipolloni, László Erdős and Dominik Schröder “Functional Central Limit Theorems for Wigner Matrices” In Accepted for publication in Ann. Appl. Probab, 2020 arXiv:2012.13218
  18. Giorgio Cipolloni, László Erdős and Dominik Schröder “Optimal lower bound on the least singular value of the shifted Ginibre ensemble” In Probab. Math. Phys. 1.1, 2020, pp. 101–146 DOI: 10.2140/pmp.2020.1.101
  19. Giorgio Cipolloni, László Erdős and Dominik Schröder “Optimal multi-resolvent local laws for Wigner matrices” In Electron. J. Probab. 27, 2022, pp. – DOI: 10.1214/22-ejp838
  20. Giorgio Cipolloni, László Erdős and Dominik Schröder “Rank-uniform local law for Wigner matrices” In preprint, 2022 arXiv:2203.01861
  21. Giorgio Cipolloni, László Erdős and Dominik Schröder “Thermalisation for Wigner matrices” In J. Funct. Anal. 282.8, 2022, pp. Paper No. 109394\bibrangessep37 DOI: 10.1016/j.jfa.2022.109394
  22. “Gaussian fluctuations for linear eigenvalue statistics of products of independent iid random matrices” In J. Theoret. Probab. 33.3, 2020, pp. 1541–1612 DOI: 10.1007/s10959-019-00905-0
  23. “The local semicircle law for a general class of random matrices” In Electron. J. Probab. 18, 2013, pp. no. 59\bibrangessep58 DOI: 10.1214/EJP.v18-2473
  24. László Erdős, Torben Krüger and Dominik Schröder “Random matrices with slow correlation decay” In Forum Math. Sigma 7, 2019, pp. e8\bibrangessep89 DOI: 10.1017/fms.2019.2
  25. “Universality of local spectral statistics of random matrices” In Bull. Amer. Math. Soc. (N.S.) 49.3, 2012, pp. 377–414 DOI: 10.1090/S0273-0979-2012-01372-1
  26. P.J. Forrester “Fluctuation formula for complex random matrices” In J. Phys. A 32.13, 1999, pp. L159–L163 DOI: 10.1088/0305-4470/32/13/003
  27. Yan V. Fyodorov “On statistics of bi-orthogonal eigenvectors in real and complex Ginibre ensembles: combining partial Schur decomposition with supersymmetry” In Comm. Math. Phys. 363.2, 2018, pp. 579–603 DOI: 10.1007/s00220-018-3163-3
  28. V.L. Girko “The circular law” In Teor. Veroyatnost. i Primenen. 29.4, 1984, pp. 669–679
  29. “Mesoscopic eigenvalue statistics of Wigner matrices” In Ann. Appl. Probab. 27.3, 2017, pp. 1510–1550 DOI: 10.1214/16-AAP1237
  30. “Rigidity and a mesoscopic central limit theorem for Dyson Brownian motion for general β𝛽\betaitalic_β and potentials” In Probab. Theory Related Fields 175.1-2, 2019, pp. 209–253 DOI: 10.1007/s00440-018-0889-y
  31. Alexei M. Khorunzhy, Boris A. Khoruzhenko and Leonid A. Pastur “Asymptotic properties of large random matrices with independent entries” In J. Math. Phys. 37.10, 1996, pp. 5033–5060 DOI: 10.1063/1.531589
  32. Phil Kopel “Linear Statistics of Non-Hermitian Matrices Matching the Real or Complex Ginibre Ensemble to Four Moments” In preprint, 2015 arXiv:1510.02987
  33. Benjamin Landon, Patrick Lopatto and Philippe Sosoe “Single eigenvalue fluctuations of general Wigner-type matrices” In preprint, 2021 arXiv:2105.01178
  34. “Almost-optimal bulk regularity conditions in the CLT for Wigner matrices” In preprint, 2022 arXiv:2204.03419
  35. Benjamin Landon, Philippe Sosoe and Horng-Tzer Yau “Fixed energy universality of Dyson Brownian motion” In Adv. Math. 346, 2019, pp. 1137–1332 DOI: 10.1016/j.aim.2019.02.010
  36. Ji Oon Lee and Kevin Schnelli “Edge universality for deformed Wigner matrices” In Rev. Math. Phys. 27.8, 2015, pp. 1550018\bibrangessep94 DOI: 10.1142/S0129055X1550018X
  37. “Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees” In preprint, 2013 arXiv:1302.4738
  38. Hoi H. Nguyen and Van Vu “Random matrices: law of the determinant” In Ann. Probab. 42.1, 2014, pp. 146–167 DOI: 10.1214/12-AOP791
  39. “Universal Gaussian fluctuations of non-Hermitian matrix ensembles: from weak convergence to almost sure CLTs” In ALEA Lat. Am. J. Probab. Math. Stat. 7, 2010, pp. 341–375 URL: http://alea.math.cnrs.fr/articles/v7/07-18.pdf
  40. “Central limit theorem for linear eigenvalue statistics of elliptic random matrices” In J. Theoret. Probab. 29.3, 2016, pp. 1121–1191 DOI: 10.1007/s10959-015-0609-9
  41. B. Rider “Deviations from the circular law” In Probab. Theory Related Fields 130.3, 2004, pp. 337–367 DOI: 10.1007/s00440-004-0355-x
  42. B. Rider and Jack W. Silverstein “Gaussian fluctuations for non-Hermitian random matrix ensembles” In Ann. Probab. 34.6, 2006, pp. 2118–2143 DOI: 10.1214/009117906000000403
  43. “The noise in the circular law and the Gaussian free field” In Int. Math. Res. Not. IMRN, 2007, pp. Art. ID rnm006\bibrangessep33 DOI: 10.1093/imrn/rnm006
  44. Arvind Sankar, Daniel A. Spielman and Shang-Hua Teng “Smoothed analysis of the condition numbers and growth factors of matrices” In SIAM J. Matrix Anal. Appl. 28.2, 2006, pp. 446–476 DOI: 10.1137/S0895479803436202
  45. “The least singular value of the general deformed Ginibre ensemble” In preprint, 2022 arXiv:2204.06026
  46. Galen R. Shorack and Jon A. Wellner “Empirical Processes with Applications to Statistics” Society for IndustrialApplied Mathematics, 2009 DOI: 10.1137/1.9780898719017
  47. N.J. Simm “Central limit theorems for the real eigenvalues of large Gaussian random matrices” In Random Matrices Theory Appl. 6.1, 2017, pp. 1750002\bibrangessep18 DOI: 10.1142/S2010326317500022
  48. “Random matrices: the circular law” In Commun. Contemp. Math. 10.2, 2008, pp. 261–307 DOI: 10.1142/S0219199708002788
  49. “Random matrices: universality of local spectral statistics of non-Hermitian matrices” In Ann. Probab. 43.2, 2015, pp. 782–874 DOI: 10.1214/13-AOP876
  50. “Smooth analysis of the condition number and the least singular value” In Math. Comp. 79.272, 2010, pp. 2333–2352 DOI: 10.1090/S0025-5718-2010-02396-8
  51. Konstantin Tikhomirov “Invertibility via distance for noncentered random matrices with continuous distributions” In Random Structures Algorithms 57.2, 2020, pp. 526–562 DOI: 10.1002/rsa.20920
Citations (16)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets