Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling Multi-relations for Convolutional-based Knowledge Graph Embedding (2210.11711v1)

Published 21 Oct 2022 in cs.CL and cs.AI

Abstract: Representation learning of knowledge graphs aims to embed entities and relations into low-dimensional vectors. Most existing works only consider the direct relations or paths between an entity pair. It is considered that such approaches disconnect the semantic connection of multi-relations between an entity pair, and we propose a convolutional and multi-relational representation learning model, ConvMR. The proposed ConvMR model addresses the multi-relation issue in two aspects: (1) Encoding the multi-relations between an entity pair into a unified vector that maintains the semantic connection. (2) Since not all relations are necessary while joining multi-relations, we propose an attention-based relation encoder to automatically assign weights to different relations based on semantic hierarchy. Experimental results on two popular datasets, FB15k-237 and WN18RR, achieved consistent improvements on the mean rank. We also found that ConvMR is efficient to deal with less frequent entities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.