Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Le Cam's Equation: Exact Minimax Rates over Convex Density Classes (2210.11436v2)

Published 20 Oct 2022 in math.ST, stat.ML, and stat.TH

Abstract: We study the classical problem of deriving minimax rates for density estimation over convex density classes. Building on the pioneering work of Le Cam (1973), Birge (1983, 1986), Wong and Shen (1995), Yang and Barron (1999), we determine the exact (up to constants) minimax rate over any convex density class. This work thus extends these known results by demonstrating that the local metric entropy of the density class always captures the minimax optimal rates under such settings. Our bounds provide a unifying perspective across both parametric and nonparametric convex density classes, under weaker assumptions on the richness of the density class than previously considered. Our proposed `multistage sieve' MLE applies to any such convex density class. We further demonstrate that this estimator is also adaptive to the true underlying density of interest. We apply our risk bounds to rederive known minimax rates including bounded total variation, and Holder density classes. We further illustrate the utility of the result by deriving upper bounds for less studied classes, e.g., convex mixture of densities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.