Dirichlet Heat kernel estimates for a large class of anisotropic Markov processes (2210.11225v3)
Abstract: Let $Z=(Z{1}, \ldots, Z{d})$ be the d-dimensional L\'evy {process} where {$Zi$'s} are independent 1-dimensional L\'evy {processes} with identical jumping kernel $ \nu1(r) =r{-1}\phi(r){-1}$. Here $\phi$ is {an} increasing function with weakly scaling condition of order $\underline \alpha, \overline \alpha\in (0, 2)$. We consider a symmetric function $J(x,y)$ comparable to \begin{align*} \begin{cases} \nu1(|xi - yi|)\qquad&\text{ if $xi \ne yi$ for some $i$ and $xj = yj$ for all $j \ne i$}\ 0\qquad&\text{ if $xi \ne yi$ for more than one index $i$}. \end{cases} \end{align*} Corresponding to the jumping kernel $J$, there exists an anisotropic Markov process $X$, see \cite{KW22}. In this article, we establish sharp two-sided Dirichlet heat kernel estimates for $X$ in $C{1,1}$ open set, under certain regularity conditions. As an application of the main results, we derive the Green function estimates.