Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decay rates of convergence for Fokker-Planck equations with confining drift (2210.11090v2)

Published 20 Oct 2022 in math.AP and math.PR

Abstract: We consider Fokker-Planck equations in the whole Euclidean space, driven by Levy processes, under the action of confining drifts, as in the classical Ornstein-Ulhenbeck model. We introduce a new PDE method to get exponential or sub-exponential decay rates, as time goes to infinity, of zero average solutions, under some diffusivity condition on the Levy process, which includes the fractional Laplace operator as a model example. Our approach relies on the long time oscillation estimates of the adjoint problem and applies to (the possible superposition of) both local and nonlocal diffusions, as well as to strongly or weakly confining drifts. Our results extend, with a unifying perspective, many previous works based on different analytic or probabilistic methods, with several interesting connections. On one hand, we make a link between the (nonlinear) PDE methods used for the long time behavior of Hamilton-Jacobi equations and the decay estimates of Fokker-Planck equations; on another hand, we give a purely analytical approach towards some oscillation decay estimates which were obtained so far only with probabilistic coupling methods.

Summary

We haven't generated a summary for this paper yet.