Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When to Ask for Help: Proactive Interventions in Autonomous Reinforcement Learning (2210.10765v1)

Published 19 Oct 2022 in cs.LG

Abstract: A long-term goal of reinforcement learning is to design agents that can autonomously interact and learn in the world. A critical challenge to such autonomy is the presence of irreversible states which require external assistance to recover from, such as when a robot arm has pushed an object off of a table. While standard agents require constant monitoring to decide when to intervene, we aim to design proactive agents that can request human intervention only when needed. To this end, we propose an algorithm that efficiently learns to detect and avoid states that are irreversible, and proactively asks for help in case the agent does enter them. On a suite of continuous control environments with unknown irreversible states, we find that our algorithm exhibits better sample- and intervention-efficiency compared to existing methods. Our code is publicly available at https://sites.google.com/view/proactive-interventions

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Annie Xie (21 papers)
  2. Fahim Tajwar (12 papers)
  3. Archit Sharma (31 papers)
  4. Chelsea Finn (264 papers)
Citations (12)