Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Group Fairness in Prediction-Based Decision Making: From Moral Assessment to Implementation (2210.10456v1)

Published 19 Oct 2022 in cs.LG and cs.CY

Abstract: Ensuring fairness of prediction-based decision making is based on statistical group fairness criteria. Which one of these criteria is the morally most appropriate one depends on the context, and its choice requires an ethical analysis. In this paper, we present a step-by-step procedure integrating three elements: (a) a framework for the moral assessment of what fairness means in a given context, based on the recently proposed general principle of "Fair equality of chances" (FEC) (b) a mapping of the assessment's results to established statistical group fairness criteria, and (c) a method for integrating the thus-defined fairness into optimal decision making. As a second contribution, we show new applications of the FEC principle and show that, with this extension, the FEC framework covers all types of group fairness criteria: independence, separation, and sufficiency. Third, we introduce an extended version of the FEC principle, which additionally allows accounting for morally irrelevant elements of the fairness assessment and links to well-known relaxations of the fairness criteria. This paper presents a framework to develop fair decision systems in a conceptually sound way, combining the moral and the computational elements of fair prediction-based decision-making in an integrated approach. Data and code to reproduce our results are available at https://github.com/joebaumann/fair-prediction-based-decision-making.

Citations (8)

Summary

We haven't generated a summary for this paper yet.