Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

You Can't See Me: Physical Removal Attacks on LiDAR-based Autonomous Vehicles Driving Frameworks (2210.09482v2)

Published 18 Oct 2022 in cs.CR

Abstract: Autonomous Vehicles (AVs) increasingly use LiDAR-based object detection systems to perceive other vehicles and pedestrians on the road. While existing attacks on LiDAR-based autonomous driving architectures focus on lowering the confidence score of AV object detection models to induce obstacle misdetection, our research discovers how to leverage laser-based spoofing techniques to selectively remove the LiDAR point cloud data of genuine obstacles at the sensor level before being used as input to the AV perception. The ablation of this critical LiDAR information causes autonomous driving obstacle detectors to fail to identify and locate obstacles and, consequently, induces AVs to make dangerous automatic driving decisions. In this paper, we present a method invisible to the human eye that hides objects and deceives autonomous vehicles' obstacle detectors by exploiting inherent automatic transformation and filtering processes of LiDAR sensor data integrated with autonomous driving frameworks. We call such attacks Physical Removal Attacks (PRA), and we demonstrate their effectiveness against three popular AV obstacle detectors (Apollo, Autoware, PointPillars), and we achieve 45{\deg} attack capability. We evaluate the attack impact on three fusion models (Frustum-ConvNet, AVOD, and Integrated-Semantic Level Fusion) and the consequences on the driving decision using LGSVL, an industry-grade simulator. In our moving vehicle scenarios, we achieve a 92.7% success rate removing 90\% of a target obstacle's cloud points. Finally, we demonstrate the attack's success against two popular defenses against spoofing and object hiding attacks and discuss two enhanced defense strategies to mitigate our attack.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yulong Cao (26 papers)
  2. S. Hrushikesh Bhupathiraju (1 paper)
  3. Pirouz Naghavi (3 papers)
  4. Takeshi Sugawara (6 papers)
  5. Z. Morley Mao (34 papers)
  6. Sara Rampazzi (13 papers)
Citations (40)

Summary

We haven't generated a summary for this paper yet.