Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating Search System Explainability with Psychometrics and Crowdsourcing (2210.09430v3)

Published 17 Oct 2022 in cs.IR

Abstract: As information retrieval (IR) systems, such as search engines and conversational agents, become ubiquitous in various domains, the need for transparent and explainable systems grows to ensure accountability, fairness, and unbiased results. Despite recent advances in explainable AI and IR techniques, there is no consensus on the definition of explainability. Existing approaches often treat it as a singular notion, disregarding the multidimensional definition postulated in the literature. In this paper, we use psychometrics and crowdsourcing to identify human-centered factors of explainability in Web search systems and introduce SSE (Search System Explainability), an evaluation metric for explainable IR (XIR) search systems. In a crowdsourced user study, we demonstrate SSE's ability to distinguish between explainable and non-explainable systems, showing that systems with higher scores indeed indicate greater interpretability. We hope that aside from these concrete contributions to XIR, this line of work will serve as a blueprint for similar explainability evaluation efforts in other domains of machine learning and natural language processing.

Citations (1)

Summary

We haven't generated a summary for this paper yet.