Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Test-Time Training for Graph Neural Networks (2210.08813v1)

Published 17 Oct 2022 in cs.LG and cs.AI

Abstract: Graph Neural Networks (GNNs) have made tremendous progress in the graph classification task. However, a performance gap between the training set and the test set has often been noticed. To bridge such gap, in this work we introduce the first test-time training framework for GNNs to enhance the model generalization capacity for the graph classification task. In particular, we design a novel test-time training strategy with self-supervised learning to adjust the GNN model for each test graph sample. Experiments on the benchmark datasets have demonstrated the effectiveness of the proposed framework, especially when there are distribution shifts between training set and test set. We have also conducted exploratory studies and theoretical analysis to gain deeper understandings on the rationality of the design of the proposed graph test time training framework (GT3).

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.