Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A generalized scalar auxiliary variable method for the time-dependent Ginzburg-Landau equations (2210.08425v1)

Published 16 Oct 2022 in math.NA and cs.NA

Abstract: This paper develops a generalized scalar auxiliary variable (SAV) method for the time-dependent Ginzburg-Landau equations. The backward Euler is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations. In this method, the system is decoupled and linearized to avoid solving the non-linear equation at each step. The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability, which is confirmed by the numerical results. It shows that the numerical algorithm is stable.

Citations (1)

Summary

We haven't generated a summary for this paper yet.