Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Closer Look at the Calibration of Differentially Private Learners (2210.08248v2)

Published 15 Oct 2022 in cs.LG

Abstract: We systematically study the calibration of classifiers trained with differentially private stochastic gradient descent (DP-SGD) and observe miscalibration across a wide range of vision and language tasks. Our analysis identifies per-example gradient clipping in DP-SGD as a major cause of miscalibration, and we show that existing approaches for improving calibration with differential privacy only provide marginal improvements in calibration error while occasionally causing large degradations in accuracy. As a solution, we show that differentially private variants of post-processing calibration methods such as temperature scaling and Platt scaling are surprisingly effective and have negligible utility cost to the overall model. Across 7 tasks, temperature scaling and Platt scaling with DP-SGD result in an average 3.1-fold reduction in the in-domain expected calibration error and only incur at most a minor percent drop in accuracy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.