Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensuring thermodynamic consistency with invertible coarse-graining (2210.07882v1)

Published 14 Oct 2022 in cond-mat.stat-mech

Abstract: Coarse-grained models are a core computational tool in theoretical chemistry and biophysics. A judicious choice of a coarse-grained model can yield physical insight by isolating the essential degrees of freedom that dictate the thermodynamic properties of a complex, condensed-phase system. The reduced complexity of the model typically leads to lower computational costs and more efficient sampling compared to atomistic models. Designing ``good'' coarse-grained models is an art. Generally, the mapping from fine-grained configurations to coarse-grained configurations itself is not optimized in any way; instead, the energy function associated with the mapped configurations is. In this work, we explore the consequences of optimizing the coarse-grained representation alongside its potential energy function. We use a graph machine learning framework to embed atomic configurations into a low dimensional space to produce efficient representations of the original molecular system. Because the representation we obtain is no longer directly interpretable as a real space representation of the atomic coordinates, we also introduce an inversion process and an associated thermodynamic consistency relation that allows us to rigorously sample fine-grained configurations conditioned on the coarse-grained sampling. We show that this technique is robust, recovering the first two moments of the distribution of several observables in proteins such as chignolin and alanine dipeptide.

Citations (22)

Summary

We haven't generated a summary for this paper yet.