Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super-localization of spatial network models (2210.07860v1)

Published 14 Oct 2022 in math.NA and cs.NA

Abstract: Spatial network models are used as a simplified discrete representation in a wide range of applications, e.g., flow in blood vessels, elasticity of fiber based materials, and pore network models of porous materials. Nevertheless, the resulting linear systems are typically large and poorly conditioned and their numerical solution is challenging. This paper proposes a numerical homogenization technique for spatial network models which is based on the Super Localized Orthogonal Decomposition (SLOD), recently introduced for elliptic multiscale partial differential equations. It provides accurate coarse solution spaces with approximation properties independent of the smoothness of the material data. A unique selling point of the SLOD is that it constructs an almost local basis of these coarse spaces, requiring less computations on the fine scale and achieving improved sparsity on the coarse scale compared to other state-of-the-art methods. We provide an a-posteriori analysis of the proposed method and numerically confirm the method's unique localization properties. In addition, we show its applicability also for high-contrast channeled material data.

Citations (7)

Summary

We haven't generated a summary for this paper yet.