Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discussion about Attacks and Defenses for Fair and Robust Recommendation System Design (2210.07817v1)

Published 28 Sep 2022 in cs.IR and cs.AI

Abstract: Information has exploded on the Internet and mobile with the advent of the big data era. In particular, recommendation systems are widely used to help consumers who struggle to select the best products among such a large amount of information. However, recommendation systems are vulnerable to malicious user biases, such as fake reviews to promote or demote specific products, as well as attacks that steal personal information. Such biases and attacks compromise the fairness of the recommendation model and infringe the privacy of users and systems by distorting data.Recently, deep-learning collaborative filtering recommendation systems have shown to be more vulnerable to this bias. In this position paper, we examine the effects of bias that cause various ethical and social issues, and discuss the need for designing the robust recommendation system for fairness and stability.

Summary

We haven't generated a summary for this paper yet.