Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TokenMixup: Efficient Attention-guided Token-level Data Augmentation for Transformers (2210.07562v1)

Published 14 Oct 2022 in cs.CV

Abstract: Mixup is a commonly adopted data augmentation technique for image classification. Recent advances in mixup methods primarily focus on mixing based on saliency. However, many saliency detectors require intense computation and are especially burdensome for parameter-heavy transformer models. To this end, we propose TokenMixup, an efficient attention-guided token-level data augmentation method that aims to maximize the saliency of a mixed set of tokens. TokenMixup provides x15 faster saliency-aware data augmentation compared to gradient-based methods. Moreover, we introduce a variant of TokenMixup which mixes tokens within a single instance, thereby enabling multi-scale feature augmentation. Experiments show that our methods significantly improve the baseline models' performance on CIFAR and ImageNet-1K, while being more efficient than previous methods. We also reach state-of-the-art performance on CIFAR-100 among from-scratch transformer models. Code is available at https://github.com/mlvlab/TokenMixup.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hyeong Kyu Choi (10 papers)
  2. Joonmyung Choi (8 papers)
  3. Hyunwoo J. Kim (70 papers)
Citations (32)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com