Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identification of quantum entanglement with Siamese convolutional neural networks and semi-supervised learning (2210.07410v5)

Published 13 Oct 2022 in quant-ph and cs.AI

Abstract: Quantum entanglement is a fundamental property commonly used in various quantum information protocols and algorithms. Nonetheless, the problem of identifying entanglement has still not reached a general solution for systems larger than $2\times3$. In this study, we use deep convolutional NNs, a type of supervised machine learning, to identify quantum entanglement for any bipartition in a 3-qubit system. We demonstrate that training the model on synthetically generated datasets of random density matrices excluding challenging positive-under-partial-transposition entangled states (PPTES), which cannot be identified (and correctly labeled) in general, leads to good model accuracy even for PPTES states, that were outside the training data. Our aim is to enhance the model's generalization on PPTES. By applying entanglement-preserving symmetry operations through a triple Siamese network trained in a semi-supervised manner, we improve the model's accuracy and ability to recognize PPTES. Moreover, by constructing an ensemble of Siamese models, even better generalization is observed, in analogy with the idea of finding separate types of entanglement witnesses for different classes of states.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com