Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse in Space and Time: Audio-visual Synchronisation with Trainable Selectors (2210.07055v1)

Published 13 Oct 2022 in cs.CV, cs.LG, cs.MM, cs.SD, and eess.AS

Abstract: The objective of this paper is audio-visual synchronisation of general videos 'in the wild'. For such videos, the events that may be harnessed for synchronisation cues may be spatially small and may occur only infrequently during a many seconds-long video clip, i.e. the synchronisation signal is 'sparse in space and time'. This contrasts with the case of synchronising videos of talking heads, where audio-visual correspondence is dense in both time and space. We make four contributions: (i) in order to handle longer temporal sequences required for sparse synchronisation signals, we design a multi-modal transformer model that employs 'selectors' to distil the long audio and visual streams into small sequences that are then used to predict the temporal offset between streams. (ii) We identify artefacts that can arise from the compression codecs used for audio and video and can be used by audio-visual models in training to artificially solve the synchronisation task. (iii) We curate a dataset with only sparse in time and space synchronisation signals; and (iv) the effectiveness of the proposed model is shown on both dense and sparse datasets quantitatively and qualitatively. Project page: v-iashin.github.io/SparseSync

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com