Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer Deep Reinforcement Learning-based Large-scale V2G Continuous Charging Coordination with Renewable Energy Sources (2210.07013v1)

Published 13 Oct 2022 in eess.SY, cs.AI, cs.LG, and cs.SY

Abstract: Due to the increasing popularity of electric vehicles (EVs) and the technological advancement of EV electronics, the vehicle-to-grid (V2G) technique and large-scale scheduling algorithms have been developed to achieve a high level of renewable energy and power grid stability. This paper proposes a deep reinforcement learning (DRL) method for the continuous charging/discharging coordination strategy in aggregating large-scale EVs in V2G mode with renewable energy sources (RES). The DRL coordination strategy can efficiently optimize the electric vehicle aggregator's (EVA's) real-time charging/discharging power with the state of charge (SOC) constraints of the EVA and the individual EV. Compared with uncontrolled charging, the load variance is reduced by 97.37$\%$ and the charging cost by 76.56$\%$. The DRL coordination strategy further demonstrates outstanding transfer learning ability to microgrids with RES and large-scale EVA, as well as the complicated weekly scheduling. The DRL coordination strategy demonstrates flexible, adaptable, and scalable performance for the large-scale V2G under realistic operating conditions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yubao Zhang (3 papers)
  2. Xin Chen (458 papers)
  3. Yuchen Zhang (112 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.