Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application-Driven AI Paradigm for Hand-Held Action Detection (2210.06682v1)

Published 13 Oct 2022 in cs.CV and cs.AI

Abstract: In practical applications especially with safety requirement, some hand-held actions need to be monitored closely, including smoking cigarettes, dialing, eating, etc. Taking smoking cigarettes as example, existing smoke detection algorithms usually detect the cigarette or cigarette with hand as the target object only, which leads to low accuracy. In this paper, we propose an application-driven AI paradigm for hand-held action detection based on hierarchical object detection. It is a coarse-to-fine hierarchical detection framework composed of two modules. The first one is a coarse detection module with the human pose consisting of the whole hand, cigarette and head as target object. The followed second one is a fine detection module with the fingers holding cigarette, mouth area and the whole cigarette as target. Some experiments are done with the dataset collected from real-world scenarios, and the results show that the proposed framework achieve higher detection rate with good adaptation and robustness in complex environments.

Summary

We haven't generated a summary for this paper yet.