Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are Sample-Efficient NLP Models More Robust? (2210.06456v2)

Published 12 Oct 2022 in cs.CL and cs.LG

Abstract: Recent results in image classification and extractive question answering have observed that pre-trained models trained on less in-distribution data have better out-of-distribution performance. However, it is unclear how broadly these trends hold. We conduct a large empirical study across three tasks, three broadly-applicable modeling interventions (increasing model size, using a different adaptation method, and pre-training on more data), and 14 diverse datasets to investigate the relationship between sample efficiency (amount of data needed to reach a given ID accuracy) and robustness (how models fare on OOD evaluation). We find that higher sample efficiency is only correlated with better average OOD robustness on some modeling interventions and tasks, but not others. On individual datasets, models with lower sample efficiency can even be more robust. These results suggest that general-purpose methods for improving sample efficiency are unlikely to yield universal OOD robustness improvements, since such improvements are highly dataset- and task-dependent. Even in an era of large, multi-purpose pretrained models, task-specific decisions may often be necessary for OOD generalization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Nelson F. Liu (19 papers)
  2. Ananya Kumar (27 papers)
  3. Percy Liang (239 papers)
  4. Robin Jia (59 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.