Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Cross Attention for Few-shot Learning (2210.06311v1)

Published 12 Oct 2022 in cs.CV and cs.LG

Abstract: Few-shot learning (FSL) has attracted considerable attention recently. Among existing approaches, the metric-based method aims to train an embedding network that can make similar samples close while dissimilar samples as far as possible and achieves promising results. FSL is characterized by using only a few images to train a model that can generalize to novel classes in image classification problems, but this setting makes it difficult to learn the visual features that can identify the images' appearance variations. The model training is likely to move in the wrong direction, as the images in an identical semantic class may have dissimilar appearances, whereas the images in different semantic classes may share a similar appearance. We argue that FSL can benefit from additional semantic features to learn discriminative feature representations. Thus, this study proposes a multi-task learning approach to view semantic features of label text as an auxiliary task to help boost the performance of the FSL task. Our proposed model uses word-embedding representations as semantic features to help train the embedding network and a semantic cross-attention module to bridge the semantic features into the typical visual modal. The proposed approach is simple, but produces excellent results. We apply our proposed approach to two previous metric-based FSL methods, all of which can substantially improve performance. The source code for our model is accessible from github.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Bin Xiao (93 papers)
  2. Chien-Liang Liu (2 papers)
  3. Wen-Hoar Hsaio (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com