Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities (2210.05994v1)

Published 12 Oct 2022 in math.OC and cs.LG

Abstract: Variational inequalities are a broad formalism that encompasses a vast number of applications. Motivated by applications in machine learning and beyond, stochastic methods are of great importance. In this paper we consider the problem of stochastic finite-sum cocoercive variational inequalities. For this class of problems, we investigate the convergence of the method based on the SARAH variance reduction technique. We show that for strongly monotone problems it is possible to achieve linear convergence to a solution using this method. Experiments confirm the importance and practical applicability of our approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.