Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Cross-Validated Targeted Maximum Likelihood Estimator for Data-Adaptive Experiment Selection Applied to the Augmentation of RCT Control Arms with External Data (2210.05802v3)

Published 11 Oct 2022 in stat.ME

Abstract: Augmenting the control arm of a randomized controlled trial (RCT) with external data may increase power at the risk of introducing bias. Existing data fusion estimators generally rely on stringent assumptions or may have decreased coverage or power in the presence of bias. Framing the problem as one of data-adaptive experiment selection, potential experiments include the RCT only or the RCT combined with different candidate real-world datasets. To select and analyze the experiment with the optimal bias-variance tradeoff, we develop a novel experiment-selector cross-validated targeted maximum likelihood estimator (ES-CVTMLE). The ES-CVTMLE uses two bias estimates: 1) a function of the difference in conditional mean outcome under control between the RCT and combined experiments and 2) an estimate of the average treatment effect on a negative control outcome (NCO). We define the asymptotic distribution of the ES-CVTMLE under varying magnitudes of bias and construct confidence intervals by Monte Carlo simulation. In simulations involving violations of identification assumptions, the ES-CVTMLE had better coverage than test-then-pool approaches and an NCO-based bias adjustment approach and higher power than one implementation of a Bayesian dynamic borrowing approach. We further demonstrate the ability of the ES-CVTMLE to distinguish biased from unbiased external controls through a re-analysis of the effect of liraglutide on glycemic control from the LEADER trial. The ES-CVTMLE has the potential to improve power while providing relatively robust inference for future hybrid RCT-RWD studies.

Summary

We haven't generated a summary for this paper yet.