Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring and Improving Semantic Diversity of Dialogue Generation (2210.05725v2)

Published 11 Oct 2022 in cs.CL

Abstract: Response diversity has become an important criterion for evaluating the quality of open-domain dialogue generation models. However, current evaluation metrics for response diversity often fail to capture the semantic diversity of generated responses, as they mainly consider lexical aspects of the generated responses. In this paper, we introduce a new automatic evaluation metric to measure the semantic diversity of generated responses. Through human evaluation, we demonstrate that our proposed metric captures human judgments on response diversity better than existing lexical-level diversity metrics. Furthermore, motivated by analyzing an existing dialogue dataset, we propose a simple yet effective learning method that improves the semantic diversity of generated responses. Our learning method weights training samples based on the semantic distribution of the training set. We show that our learning method improves response diversity and coherency better than other baseline methods through automatic and human evaluation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Seungju Han (33 papers)
  2. Beomsu Kim (28 papers)
  3. Buru Chang (21 papers)
Citations (12)