Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Neumann boundary condition for the two-dimensional Lax-Wendroff scheme (2210.05352v1)

Published 11 Oct 2022 in math.NA and cs.NA

Abstract: We study the stability of the two-dimensional Lax-Wendroff scheme with a stabilizer that approximates solutions to the transport equation. The problem is first analyzed in the whole space in order to show that the so-called energy method yields an optimal stability criterion for this finite difference scheme. We then deal with the case of a half-space when the transport operator is outgoing. At the numerical level, we enforce the Neumann extrapolation boundary condition and show that the corresponding scheme is stable. Eventually we analyze the case of a quarter-space when the transport operator is outgoing with respect to both sides. We then enforce the Neumann extrapolation boundary condition on each side of the boundary and propose an extrapolation boundary condition at the numerical corner in order to maintain stability for the whole numerical scheme.

Citations (1)

Summary

We haven't generated a summary for this paper yet.