Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly-Supervised Optical Flow Estimation for Time-of-Flight (2210.05298v2)

Published 11 Oct 2022 in cs.CV and eess.IV

Abstract: Indirect Time-of-Flight (iToF) cameras are a widespread type of 3D sensor, which perform multiple captures to obtain depth values of the captured scene. While recent approaches to correct iToF depths achieve high performance when removing multi-path-interference and sensor noise, little research has been done to tackle motion artifacts. In this work we propose a training algorithm, which allows to supervise Optical Flow (OF) networks directly on the reconstructed depth, without the need of having ground truth flows. We demonstrate that this approach enables the training of OF networks to align raw iToF measurements and compensate motion artifacts in the iToF depth images. The approach is evaluated for both single- and multi-frequency sensors as well as multi-tap sensors, and is able to outperform other motion compensation techniques.

Citations (4)

Summary

We haven't generated a summary for this paper yet.