Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying Difficult exercises in an eTextbook Using Item Response Theory and Logged Data Analysis (2210.05294v2)

Published 11 Oct 2022 in cs.DS and cs.LO

Abstract: The growing dependence on eTextbooks and Massive Open Online Courses (MOOCs) has led to an increase in the amount of students' learning data. By carefully analyzing this data, educators can identify difficult exercises, and evaluate the quality of the exercises when teaching a particular topic. In this study, an analysis of log data from the semester usage of the OpenDSA eTextbook was offered to identify the most difficult data structure course exercises and to evaluate the quality of the course exercises. Our study is based on analyzing students' responses to the course exercises. We applied item response theory (IRT) analysis and a latent trait mode (LTM) to identify the most difficult exercises .To evaluate the quality of the course exercises we applied IRT theory. Our findings showed that the exercises that related to algorithm analysis topics represented the most difficult exercises, and there existing six exercises were classified as poor exercises which could be improved or need some attention.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)

Summary

We haven't generated a summary for this paper yet.