Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain-Specific Word Embeddings with Structure Prediction (2210.04962v1)

Published 6 Oct 2022 in cs.CL

Abstract: Complementary to finding good general word embeddings, an important question for representation learning is to find dynamic word embeddings, e.g., across time or domain. Current methods do not offer a way to use or predict information on structure between sub-corpora, time or domain and dynamic embeddings can only be compared after post-alignment. We propose novel word embedding methods that provide general word representations for the whole corpus, domain-specific representations for each sub-corpus, sub-corpus structure, and embedding alignment simultaneously. We present an empirical evaluation on New York Times articles and two English Wikipedia datasets with articles on science and philosophy. Our method, called Word2Vec with Structure Prediction (W2VPred), provides better performance than baselines in terms of the general analogy tests, domain-specific analogy tests, and multiple specific word embedding evaluations as well as structure prediction performance when no structure is given a priori. As a use case in the field of Digital Humanities we demonstrate how to raise novel research questions for high literature from the German Text Archive.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Stephanie Brandl (14 papers)
  2. David Lassner (3 papers)
  3. Anne Baillot (3 papers)
  4. Shinichi Nakajima (44 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.