Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unveiling Hidden DNN Defects with Decision-Based Metamorphic Testing (2210.04942v1)

Published 10 Oct 2022 in cs.SE

Abstract: Contemporary DNN testing works are frequently conducted using metamorphic testing (MT). In general, de facto MT frameworks mutate DNN input images using semantics-preserving mutations and determine if DNNs can yield consistent predictions. Nevertheless, we find that DNNs may rely on erroneous decisions (certain components on the DNN inputs) to make predictions, which may still retain the outputs by chance. Such DNN defects would be neglected by existing MT frameworks. Erroneous decisions, however, would likely result in successive mis-predictions over diverse images that may exist in real-life scenarios. This research aims to unveil the pervasiveness of hidden DNN defects caused by incorrect DNN decisions (but retaining consistent DNN predictions). To do so, we tailor and optimize modern eXplainable AI (XAI) techniques to identify visual concepts that represent regions in an input image upon which the DNN makes predictions. Then, we extend existing MT-based DNN testing frameworks to check the consistency of DNN decisions made over a test input and its mutated inputs. Our evaluation shows that existing MT frameworks are oblivious to a considerable number of DNN defects caused by erroneous decisions. We conduct human evaluations to justify the validity of our findings and to elucidate their characteristics. Through the lens of DNN decision-based metamorphic relations, we re-examine the effectiveness of metamorphic transformations proposed by existing MT frameworks. We summarize lessons from this study, which can provide insights and guidelines for future DNN testing.

Citations (15)

Summary

We haven't generated a summary for this paper yet.