Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TCDM: Transformational Complexity Based Distortion Metric for Perceptual Point Cloud Quality Assessment (2210.04671v3)

Published 10 Oct 2022 in cs.CV and cs.MM

Abstract: The goal of objective point cloud quality assessment (PCQA) research is to develop quantitative metrics that measure point cloud quality in a perceptually consistent manner. Merging the research of cognitive science and intuition of the human visual system (HVS), in this paper, we evaluate the point cloud quality by measuring the complexity of transforming the distorted point cloud back to its reference, which in practice can be approximated by the code length of one point cloud when the other is given. For this purpose, we first make space segmentation for the reference and distorted point clouds based on a 3D Voronoi diagram to obtain a series of local patch pairs. Next, inspired by the predictive coding theory, we utilize a space-aware vector autoregressive (SA-VAR) model to encode the geometry and color channels of each reference patch with and without the distorted patch, respectively. Assuming that the residual errors follow the multi-variate Gaussian distributions, the self-complexity of the reference and transformational complexity between the reference and distorted samples are computed using covariance matrices. Additionally, the prediction terms generated by SA-VAR are introduced as one auxiliary feature to promote the final quality prediction. The effectiveness of the proposed transformational complexity based distortion metric (TCDM) is evaluated through extensive experiments conducted on five public point cloud quality assessment databases. The results demonstrate that TCDM achieves state-of-the-art (SOTA) performance, and further analysis confirms its robustness in various scenarios. The code is publicly available at https://github.com/zyj1318053/TCDM.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. Z. Shan, Q. Yang, R. Ye, Y. Zhang, Y. Xu, X. Xu, and S. Liu, “GPA-Net: No-reference point cloud quality assessment with multi-task graph convolutional network,” IEEE Transactions on Visualization and Computer Graphics, 2022.
  2. Q. Liu, H. Yuan, J. Hou, R. Hamzaoui, and H. Su, “Model-based joint bit allocation between geometry and color for video-based 3D point cloud compression,” IEEE Transactions on Multimedia, vol. 23, pp. 3278–3291, 2020.
  3. Q. Liu, H. Su, T. Chen, H. Yuan, and R. Hamzaoui, “No-reference bitstream-layer model for perceptual quality assessment of V-PCC encoded point clouds,” IEEE Transactions on Multimedia, 2022.
  4. H. Su, Q. Liu, Y. Liu, H. Yuan, H. Yang, Z. Pan, and Z. Wang, “Bitstream-based perceptual quality assessment of compressed 3D point clouds,” IEEE Transactions on Image Processing, vol. 32, pp. 1815–1828, 2023.
  5. Q. Yang, Y. Zhang, S. Chen, Y. Xu, J. Sun, and Z. Ma, “MPED: Quantifying point cloud distortion based on multiscale potential energy discrepancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–18, 2022.
  6. H. Fan, H. Su, and L. J. Guibas, “A point set generation network for 3D object reconstruction from a single image,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 605–613.
  7. T. Wu, L. Pan, J. Zhang, T. Wang, Z. Liu, and D. Lin, “Density-aware chamfer distance as a comprehensive metric for point cloud completion,” in In Advances in Neural Information Processing Systems (NeurIPS), 2021.
  8. MPEG reference software. [Online]. Available: http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric.git
  9. Q. Yang, Z. Ma, Y. Xu, Z. Li, and J. Sun, “Inferring point cloud quality via graph similarity,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
  10. G. Lavoué, M. C. Larabi, and L. Vávsa, “On the efficiency of image metrics for evaluating the visual quality of 3D models,” IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 8, pp. 1987–1999, 2015.
  11. R. L. De Queiroz and P. A. Chou, “Motion-compensated compression of dynamic voxelized point clouds,” IEEE Transactions on Image Processing, vol. 26, no. 8, pp. 3886–3895, 2017.
  12. E. Alexiou and T. Ebrahimi, “Exploiting user interactivity in quality assessment of point cloud imaging,” in 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), 2019, pp. 1–6.
  13. A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, “Joint geometry and color projection-based point cloud quality metric,” IEEE Access, 2022.
  14. Q. Liu, H. Su, Z. Duanmu, W. Liu, and Z. Wang, “Perceptual quality assessment of colored 3D point clouds,” IEEE Transactions on Visualization and Computer Graphics, 2022.
  15. Q. Yang, H. Chen, Z. Ma, Y. Xu, R. Tang, and J. Sun, “Predicting the perceptual quality of point cloud: A 3D-to-2D projection-based exploration,” IEEE Transactions on Multimedia, vol. 23, pp. 3877–3891, 2020.
  16. Z. He, G. Jiang, Z. Jiang, and M. Yu, “Towards a colored point cloud quality assessment method using colored texture and curvature projection,” in 2021 IEEE International Conference on Image Processing (ICIP).   IEEE, 2021, pp. 1444–1448.
  17. Q. Yang, Y. Liu, S. Chen, Y. Xu, and J. Sun, “No-reference point cloud quality assessment via domain adaptation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 21 179–21 188.
  18. Q. Liu, H. Yuan, H. Su, H. Liu, Y. Wang, H. Yang, and J. Hou, “PQA-Net: Deep no reference point cloud quality assessment via multi-view projection,” IEEE transactions on circuits and systems for video technology, vol. 31, no. 12, pp. 4645–4660, 2021.
  19. G. Meynet, J. Digne, and G. Lavoué, “PC-MSDM: A quality metric for 3D point clouds,” in 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX).   IEEE, 2019, pp. 1–3.
  20. G. Meynet, Y. Nehmé, J. Digne, and G. Lavoué, “PCQM: A full-reference quality metric for colored 3D point clouds,” in 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), 2020, pp. 1–6.
  21. Y. Zhang, Q. Yang, and Y. Xu, “MS-GraphSIM: Inferring point cloud quality via multiscale graph similarity,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 1230–1238.
  22. R. Diniz, P. G. Freitas, and M. C. Farias, “Local luminance patterns for point cloud quality assessment,” in 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP).   IEEE, 2020, pp. 1–6.
  23. R. Diniz, P. G. Freitas, and M. C. Q. Farias, “Towards a point cloud quality assessment model using local binary patterns,” in 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), 2020, pp. 1–6.
  24. E. Alexiou, I. Viola, and P. Cesar, “PointPCA: Point cloud objective quality assessment using PCA-based descriptors,” arXiv preprint arXiv:2111.12663, 2021.
  25. G. Lavoué, “A multiscale metric for 3D mesh visual quality assessment,” in Computer graphics forum, vol. 30, no. 5.   Wiley Online Library, 2011, pp. 1427–1437.
  26. Y. Nehmé, F. Dupont, J.-P. Farrugia, P. Le Callet, and G. Lavoué, “Visual quality of 3D meshes with diffuse colors in virtual reality: Subjective and objective evaluation,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 3, pp. 2202–2219, 2020.
  27. U. Hahn, N. Chater, and L. B. Richardson, “Similarity as transformation,” Cognition, vol. 87, no. 1, pp. 1–32, 2003.
  28. T. Guha and R. K. Ward, “Image similarity using sparse representation and compression distance,” IEEE Transactions on Multimedia, vol. 16, no. 4, pp. 980–987, 2014.
  29. Y. Lan and R. Harvey, “Image classification using compression distance.” in VVG, 2005, pp. 173–180.
  30. P. M. Vitányi, “How incomputable is kolmogorov complexity?” Entropy, vol. 22, no. 4, p. 408, 2020.
  31. M. Li, X. Chen, X. Li, B. Ma, and P. M. Vitányi, “The similarity metric,” IEEE transactions on Information Theory, vol. 50, no. 12, pp. 3250–3264, 2004.
  32. M. W. Spratling, “A review of predictive coding algorithms,” Brain and cognition, vol. 112, pp. 92–97, 2017.
  33. K. Friston and S. Kiebel, “Predictive coding under the free-energy principle,” Philosophical transactions of the Royal Society B: Biological sciences, vol. 364, no. 1521, pp. 1211–1221, 2009.
  34. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.
  35. H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE Transactions on image processing, vol. 15, no. 2, pp. 430–444, 2006.
  36. Z. Wang and Q. Li, “Information content weighting for perceptual image quality assessment,” IEEE Transactions on image processing, vol. 20, no. 5, pp. 1185–1198, 2010.
  37. A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, “A generalized Hausdorff distance based quality metric for point cloud geometry,” in 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX).   IEEE, 2020, pp. 1–6.
  38. Z. Wang, Y. Zhang, Q. Yang, Y. Xu, Y. Zhou, J. Sun, and S. Liu, “Improving point cloud quality metrics with noticeable possibility maps,” in 2023 IEEE International Conference on Multimedia and Expo (ICME).   IEEE, 2023, pp. 360–365.
  39. E. Alexiou and T. Ebrahimi, “Point cloud quality assessment metric based on angular similarity,” in 2018 IEEE International Conference on Multimedia and Expo (ICME).   IEEE, 2018, pp. 1–6.
  40. C. H. Bennett, P. Gács, M. Li, P. M. Vitányi, and W. H. Zurek, “Information distance,” IEEE Transactions on information theory, vol. 44, no. 4, pp. 1407–1423, 1998.
  41. R. Cilibrasi and P. M. Vitányi, “Clustering by compression,” IEEE Transactions on Information theory, vol. 51, no. 4, pp. 1523–1545, 2005.
  42. N. Nikvand and Z. Wang, “Image distortion analysis based on normalized perceptual information distance,” Signal, Image and Video Processing, vol. 7, no. 3, pp. 403–410, 2013.
  43. Y. Huang and R. P. Rao, “Predictive coding,” Wiley Interdisciplinary Reviews: Cognitive Science, vol. 2, no. 5, pp. 580–593, 2011.
  44. D. O’Shaughnessy, “Linear predictive coding,” IEEE potentials, vol. 7, no. 1, pp. 29–32, 1988.
  45. F. Itakura, “Minimum prediction residual principle applied to speech recognition,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 23, no. 1, pp. 67–72, 1975.
  46. P. Wang, R. Dai, and I. F. Akyildiz, “A spatial correlation-based image compression framework for wireless multimedia sensor networks,” IEEE Transactions on Multimedia, vol. 13, no. 2, pp. 388–401, 2010.
  47. S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li et al., “Emerging MPEG standards for point cloud compression,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 133–148, 2018.
  48. Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, “The farthest point strategy for progressive image sampling,” IEEE Transactions on Image Processing, vol. 6, no. 9, pp. 1305–1315, 1997.
  49. S. Lee, M. S. Pattichis, and A. C. Bovik, “Foveated video quality assessment,” IEEE Transactions on Multimedia, vol. 4, no. 1, pp. 129–132, 2002.
  50. L. Hua, M. Yu, Z. He, R. Tu, and G. Jiang, “CPC-GSCT: Visual quality assessment for coloured point cloud based on geometric segmentation and colour transformation,” IET Image Processing, vol. 16, no. 4, pp. 1083–1095, 2022.
  51. G. Zhai, X. Wu, X. Yang, W. Lin, and W. Zhang, “A psychovisual quality metric in free-energy principle,” IEEE Transactions on Image Processing, vol. 21, no. 1, pp. 41–52, 2011.
  52. J. Wu, W. Lin, G. Shi, and A. Liu, “Perceptual quality metric with internal generative mechanism,” IEEE Transactions on Image Processing, vol. 22, no. 1, pp. 43–54, 2012.
  53. X. Zhang and X. Wu, “Image interpolation by adaptive 2D autoregressive modeling and soft-decision estimation,” IEEE transactions on image processing, vol. 17, no. 6, pp. 887–896, 2008.
  54. X. Wu, G. Zhai, X. Yang, and W. Zhang, “Adaptive sequential prediction of multidimensional signals with applications to lossless image coding,” IEEE Transactions on Image Processing, vol. 20, no. 1, pp. 36–42, 2010.
  55. K. Gu, J. Qiao, X. Min, G. Yue, W. Lin, and D. Thalmann, “Evaluating quality of screen content images via structural variation analysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 10, pp. 2689–2701, 2017.
  56. M. A. Irfan and E. Magli, “Joint geometry and color point cloud denoising based on graph wavelets,” IEEE Access, vol. 9, pp. 21 149–21 166, 2021.
  57. K. Takeuchi, H. Kashima, and N. Ueda, “Autoregressive tensor factorization for spatio-temporal predictions,” in 2017 IEEE International Conference on Data Mining (ICDM).   IEEE, 2017, pp. 1105–1110.
  58. E. Alexiou, I. Viola, T. M. Borges, T. A. Fonseca, R. L. De Queiroz, and T. Ebrahimi, “A comprehensive study of the rate-distortion performance in MPEG point cloud compression,” APSIPA Transactions on Signal and Information Processing, vol. 8, 2019.
  59. S. Perry, H. P. Cong, L. A. da Silva Cruz, J. Prazeres, M. Pereira, A. Pinheiro, E. Dumic, E. Alexiou, and T. Ebrahimi, “Quality evaluation of static point clouds encoded using MPEG codecs,” in 2020 IEEE International Conference on Image Processing (ICIP).   IEEE, 2020, pp. 3428–3432.
  60. A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, “Point cloud rendering after coding: Impacts on subjective and objective quality,” IEEE Transactions on Multimedia, vol. 23, pp. 4049–4064, 2020.
  61. E. Alexiou and T. Ebrahimi, “Towards a point cloud structural similarity metric,” in 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).   IEEE, 2020, pp. 1–6.
  62. VQEG, “Final report from the video quality experts group on the validation of objective models of video quality assessment,” [online]. Availabel: http://www.its.bldrdoc.gov/vqeg/vqeg-home.aspx.
  63. E. C. Larson and D. M. Chandler, “Most apparent distortion: full-reference image quality assessment and the role of strategy,” Journal of electronic imaging, vol. 19, no. 1, pp. 011 006–011 006, 2010.
  64. X. Wu, Y. Zhang, C. Fan, J. Hou, and S. Kwong, “Subjective quality database and objective study of compressed point clouds with 6dof head-mounted display,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 12, pp. 4630–4644, 2021.
  65. Q. Liu, H. Yuan, R. Hamzaoui, H. Su, J. Hou, and H. Yang, “Reduced reference perceptual quality model with application to rate control for video-based point cloud compression,” IEEE Trans. Image Processing, vol. 30, pp. 6623–6636, 2021.
  66. J.-M. Geusebroek, R. Van Den Boomgaard, A. W. Smeulders, and A. Dev, “Color and scale: The spatial structure of color images,” in European Conf. Computer Vision (ECCV’00).   Springer, 2000, pp. 331–341.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com