Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

A Spectral Approach to Item Response Theory (2210.04317v2)

Published 9 Oct 2022 in cs.LG and stat.ML

Abstract: The Rasch model is one of the most fundamental models in \emph{item response theory} and has wide-ranging applications from education testing to recommendation systems. In a universe with $n$ users and $m$ items, the Rasch model assumes that the binary response $X_{li} \in {0,1}$ of a user $l$ with parameter $\theta*_l$ to an item $i$ with parameter $\beta*_i$ (e.g., a user likes a movie, a student correctly solves a problem) is distributed as $\Pr(X_{li}=1) = 1/(1 + \exp{-(\theta*_l - \beta*_i)})$. In this paper, we propose a \emph{new item estimation} algorithm for this celebrated model (i.e., to estimate $\beta*$). The core of our algorithm is the computation of the stationary distribution of a Markov chain defined on an item-item graph. We complement our algorithmic contributions with finite-sample error guarantees, the first of their kind in the literature, showing that our algorithm is consistent and enjoys favorable optimality properties. We discuss practical modifications to accelerate and robustify the algorithm that practitioners can adopt. Experiments on synthetic and real-life datasets, ranging from small education testing datasets to large recommendation systems datasets show that our algorithm is scalable, accurate, and competitive with the most commonly used methods in the literature.

Citations (3)

Summary

We haven't generated a summary for this paper yet.