Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
208 tokens/sec
2000 character limit reached

Numerical Solution of an Extra-wide Angle Parabolic Equation through Diagonalization of a 1-D Indefinite Schrödinger Operator with a Piecewise Constant Potential (2210.03655v1)

Published 7 Oct 2022 in math.NA and cs.NA

Abstract: We present a numerical method for computing the solution of a partial differential equation (PDE) for modeling acoustic pressure, known as an extra-wide angle parabolic equation, that features the square root of a differential operator. The differential operator is the negative of an indefinite Schr\"{o}dinger operator with a piecewise constant potential. This work primarily deals with the 3-piece case; however, a generalization is made the case of an arbitrary number of pieces. Through restriction to a judiciously chosen lower-dimensional subspace, approximate eigenfunctions are used to obtain estimates for the eigenvalues of the operator. Then, the estimated eigenvalues are used as initial guesses for the Secant Method to find the exact eigenvalues, up to roundoff error. An eigenfunction expansion of the solution is then constructed. The computational expense of obtaining each eigenpair is independent of the grid size. The accuracy, efficiency, and scalability of this method is shown through numerical experiments and comparisons with other methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.